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A Few Classical Examples

 Ubiquitous in physics and chemistry

 Atoms diffusing on a surface and Diffusion Limited Aggregation

 Atomic clusters

 Chemical reactions (A+B → C)

 Smoke in air/latex particles at the surface of water

 Breath figures 

http://apricot.polyu.edu.hk/~lam/dla/dla.html


But Also…

 Two-dimensional decaying turbulence

 Epidemics spreading (S+H → S+S, S → H, or S → Ø…)

 Formation of river and vascular networks



And Even…

 Galaxy… or bacteria clusters

 Poker tournaments (players “aggregate”, chips are conserved…)

 … and the reverse and similar problem of fracture (A → A+A)



Important Features

 Importance of conservation laws: mass, energy, 

momentum, or more exotic quantities (flow of a river, 

chips in a poker tournament…)

 Important quantities: distribution of cluster masses (or 

joint distribution of conserved quantities), number of 

remaining clusters…

 This distribution of “mass” can be mono or polydisperse 

and is often scale invariant: ( , ) ( / )zP m t t f m t



Important Features

 Importance of the diffusive or ballistic motion of clusters

 Possibility of obtaining compact or fractal clusters

 The mean-field approach (neglecting spatial correlations) 

is often incorrect in low effective dimensions 
(typically d· 2 or even d· 4 for diffusion processes)

 Out of equilibrium reaction/aggregation processes can 

lead to dynamical phase transitions (directed 

percolation…)



A Few Selected Topics

Simple reaction-diffusion processes: 

A+A → Ø; A+B → Ø; A+A → A 
(application to a river network, in the latter case)

Monodispersity (bell-shaped mass distribution) 

& polydispersity (power-law mass distribution) 

in the framework of Smoluchowsky’s approach 
(application to breath figures and… poker tournaments)

Dynamical phase transitions: 
A+A → Ø, A → (n+1)A 
(n odd: directed percolation; n even: parity conserving)



Reaction-Diffusion Processes

 The reaction

Mean-field approach:

In fact, there is a strong depletion effect near surviving 

particles:

And the mean-field approximation is exact in

The mean-field decay is the fastest and can be realized by 

stirring the solution (hence eliminating spatial correlations)  
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Reaction-Diffusion Processes

 The reaction

Mean-field approach:

In fact, when            

there is again a very strong 

depletion effect giving rise to 

segregation of the particles
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Reaction-Diffusion Processes

 The reaction

A physical argument:

Initially, in a region of linear size L, 

The species in excess will dominate in this region, and 
L is ultimately the diffusion length, L(t)~t1/2. Hence, 

And the mean-field approximation is exact in
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Reaction-Diffusion Processes

 The reaction

Mean-field approach:

Same depletion effect as for                   :

And the mean-field approximation is again exact in
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Reaction-Diffusion Processes

 The reaction                     with conservation of “mass”

Mean-field approach (Smoluchowsky’s equation):

Mean-field solution:

Only correct in 
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Reaction-Diffusion Processes

 The reaction                     with conservation of “charge” and 

constant injection of particles (mass distribution        )

Mean-field approach (Smoluchowsky’s equation):

General scaling solution:

Polydispersity
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Reaction-Diffusion Processes

Application to the formation of a river network

 Fractal dimension:

 The “next” river is 

~ 3 x longer than 

the previous one

V=pR2

V=R2

V=R3 V=R4/3
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General Mean-Field Approach

A general physical aggregation process is described by:

 Conservation law(s):

 Nature of the collision/aggregation physical process: the 

merging Kernel,

Ex: d-dimensional “cross-section”  ¾~Rd and  m~RD

 Intrinsic growth of clusters

 Deposition: 

 Fracture Kernel

 … 
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General Mean-Field Approach

A general physical aggregation process is described by:

Can describe many physical situations and  can lead 

to mono and polydispersity and even gelation…
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General Mean-Field Approach
The general case of pure aggregation

 Assume that the collision Kernel satisfies

 Then (Van Dongen and Ernst), there is a precise 

mono/polydispersity criterion:
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Scaling distribution of fortunes (stacks):

Scaling equation (integro-differential and 
non-linear; no parameter):

Scaling in Poker Tournaments



Internet & WPT Data 
(20-10000$ buy-in)



Dynamical Phase Transitions

Consider the reaction/breakdown process for diffusing 
particles: A+A → Ø (rate k), A → (n+1)A (rate p)

Mean-field approach:

Mean-field completely fails in describing the fact that for 
d<dc, one has pc>0, and different universality classes 

depending on the parity of n
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Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class
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Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

 DP universality class is ubiquitous in out of equilibrium 

physics and is thus very robust (adding the reaction 

A+A → A does not change anything…),… except in the 

presence of disorder

 In principle, many possible experimental realizations:

 Catalytic reactions on a surface (CO+O → CO2)

 Growing interfaces

 Flowing granular matter  

 Porous media

 Turbulent liquid crystals

 …
Douady & Daer



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in 

turbulent liquid crystals 
(intermittent regimes between to dynamic scattering modes – DSM)



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in 

turbulent liquid crystals (scaling function)
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Dynamical Phase Transitions

Even n: the parity conserving (PC) universality class 

(a “theorist’s curiosity”)

dc>1, but dc· 5/3<2 !

Different critical exponents from DP (in d=1, ¯¼ 0.4, ±¼ 0.2) 

Strong numerical corrections to scaling (DP ???)

No analytical (even approximate) results available 



Conclusion

Reaction/aggregation processes:

Are ubiquitous in Nature

Appear at all spatial and temporal scales

Offer rich physical properties (dynamical phase diagram, 

fractals, dynamical scaling…)

 Involve all the modern tools of theoretical physics 

(field theory, renormalization group, perturbative and non 

perturbative methods, sophisticated numerical methods…)

Thank you for your attention


