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A Few Classical Examples

» Ubiquitous in physics and chemistry
> Atoms dlffusmg on a surface and Diffusion L|m|ted Aggregatlon

» Atomic clusters

» Chemical reactions (A+B — C)

» Smoke in air/latex particles at the surface of water
> Breath figures
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http://apricot.polyu.edu.hk/~lam/dla/dla.html

But Also...

» Two-dimensional decaying turbulence
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» Epidemics spreading (St+H — S+S,S > H,orS —> d...)
» Formation of river and vascular networks

Amazon River Network




And Even...

» Galaxy... or bacteria clusters

» Poker tournaments (players “aggregate”, chips are conserved...)

» ... and the reverse and similar problem of fracture (A — A+A)



Important Features

» Importance of conservation laws: mass, energy,
momentum, or more exotic quantities (flow of a river,
chips in a poker tournament...)

» Important quantities: distribution of cluster masses (or
joint distribution of conserved guantities), number of
remaining clusters...

» This distribution of “mass” can be mono or polydisperse
and is often scale invariant: P(m,t) =t f (m/t?)
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Important Features

» Importance of the diffusive or ballistic motion of clusters
» Possibility of obtaining compact or fractal clusters

» The mean-field approach (neglecting spatial correlations)
IS often incorrect in low effective dimensions
(typically d< 2 or even d< 4 for diffusion processes)

» Out of equilibrium reaction/aggregation processes can
lead to dynamical phase transitions (directed
percolation...)



A Few Selected Topics

» Simple reaction-diffusion processes:
A+A - O; A+B - O; A+tA - A
(application to a river network, in the latter case)

» Monodispersity (bell-shaped mass distribution)
& polydispersity (power-law mass distribution)

in the framework of Smoluchowsky’s approach
(application to breath figures and... poker tournaments)

» Dynamical phase transitions:
A+A - J, A — (n+1)A
(n odd: directed percolation; n even: parity conserving)



Reaction-Diffusion Processes

» The reaction A+A > @
Mean-field approach:

d—p:—Zxkxpz, po(t) = L -
dt 1o 2K
p(0)
In fact, there Is a strong depletion effect near surviving
particles: ,O(t) ~ | (t) - t—d/2’ d<?
P~ d=2

t
And the mean-field approximation is exact ind >d, =2

The mean-field decay is the fastest and can be realized by
stirring the solution (hence eliminating spatial correlations)



Reaction-Diffusion Processes

> The reaction AAB —»> @

Mean-field approach: d('jOA
t

Pa (t) ~ Pa (O) EXp (_kt [pB (O) — Pa (O)]) , Pa (O) < Ps (O)

=—KX p, X pg,

1 1 .
pa(t) = 1 ~ o If A (0) = p5(0)
+ kt

P (0)

In fact, when p, (t) = o5 (1)
there is again a very strong
depletion effect giving rise to
segregation of the particles




Reaction-Diffusion Processes

» The reaction A+B — @, for p,(0) = p;(0)

A physical argument:
Initially, in a region of linear size L, | p,(0)— o5 (0) |~ L™**

The species in excess will dominate In this region, and
L is ultimately the diffusion length, L(¢)~t'/2. Hence,

o(t)~t", d<4
p) -, d=4

And the mean-field approximation is exact ind >d, =4



Reaction-Diffusion Processes

» The reaction A+A —> A
Mean-field approach:

dp 2
—:—k , t = ~

Same depletion effect asforA+A — @:
p(t)~ L) ~t™"*, d<2
p)~ 1%, d=2

And the mean-field approximation is again exact ind >d_ =2



Reaction-Diffusion Processes

» The reaction A+A — A with conservation of “mass”
Mean-field approach (Smoluchowsky’s equation):

Oél_f(m,t) =k [" p(m—s,t)p(s.t) ds — 2k p(m,t) p(t).

with p(t) = jo+°°p(m,t) dm, and m_, = j0+°°mp(m,t) dm

m, .kt

m,, (kt)’

Mean-field solution: p(m,t) =

Only correctind >d_ =2



Reaction-Diffusion Processes

» The reaction A+ A — A with conservation of “charge” and
constant injection of particles (mass distribution 1(m))

Mean-field approach (Smoluchowsky’s equation):

C:j—’f(m,t) = k_"j:p(m —s,t) p(s,t) ds —2k p(m,t) o(t) + 1 (M),
with m, = [ mp(m,t) dm-+ (1)t

General scaling solution: p(m,t)=m™f(m/t?),
with £(0) ~ 1, and f(x) ~ exp(X)

<|>>O: ZMFZZ’ Zdzlzg’ and 2-22_1

£ Polydispersity

(1)=0: z,,. =1, zdzlz% and r=3—g (d. =2)
Z



Reaction-Diffusion Processes

» Application to t

ne formation of a river network

e Fractal dimension:

4 V=R2
d f — —
3
e The “next’ river is
-2
~3xlonger than V7™
the previous one
-

Amazon River Network




General Mean-Field Approach

A general physical aggregation process is described by:
» Conservation law(s): m=m, +m,

» Nature of the collision/aggregation physical process: the
merging Kernel, K(m;,m,)

Ex: d-dimensional “cross-section” o~R? and m~R?
d
K(m,m,)=(m® +m;°)

» Intrinsic growth of clusters
m=v(m,t)

» Deposition: +1(m,t)

» Fracture Kernel m —m, +m,

> ...




General Mean-Field Approach

A general physical aggregation process is described by:

%—'[;(m,t) +@im[v(m,t)p(m,t)] = J'j: K(m-s,s)p(m-s,t)o(s,t) ds

—2p(m,t) j_*“’ K (m,s)p(s,t) ds
+ 1 (m,t) + Fracture +...

Can describe many physical situations and can lead
to mono and polydispersity and even gelation...



General Mean-Field Approach

The general case of pure aggregation (v(m,t) =0, 1(m,t) =0)
» Assume that the collision Kernel satisfies
K(am,am,) =K (m,m,)  Ex: K(m,m,)=(m +m®)’

K(m,m,)~m#*m;, for m, >m, A=d/D, u=0

» Then (Van Dongen and Ernst), there is a precise
mono/polydispersity criterion: p(m,t)=m~™f(m/t*); f(0) ~1

o1 < 0:the mass distribution is monodisperse (7 <0)

o1 > 0:the mass distribution is polydisperse with 7 =1+ 1

e 1 =0:the mass distribution is polydisperse with 7 <1+ A
T = 2—j0+oo x** f (x)dx can be determined by

perturbative and non-perturbative methods



Scaling in Poker Tournaments
& Scaling distribution of fortunes (stacks):
_ N(t) T

P(z,t) = 363/ ()
N(t) = % ~ Ngexp(—t/tg)

¢ Scaling equation (integro-differential and
non-linear; no parameter):

(X0 4+ X f1(X) + 5£(X/2) [§5 F(V)dY

[XRHX =) (Y)Y dY

+5 /0 F(X+Y)f(Y)dY =0
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Dynamical Phase Transitions

Consider the reaction/breakdown process for diffusing
particles: A+A — @ (rate k), A — (n+1)A (rate p)

Mean-field approach:

dp =—2kp® +npp,

dt
p(.2) = (P~ p.), with p, =0, and f=1
ep(t,p.)~t, with §=1

Mean-field completely fails in describing the fact that for
d<d,, one has p,>0, and different universality classes

depending on the parity of n



Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

position 1

time t

Absorbing Active
State

State

P=P, PP,

PP,

d.=4; for d=1 p~=0.276486(6)... and ¢ = 0.159464(6)...

eBest theoretical estimate ind =1 =(1—1/\/§ /2=0.276393...!
eField theoretical methods available for d close to d,
(f=1-¢/6-0.011285"...; s =4—d)



Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

» DP universality class is ubiquitous in out of equilibrium
physics and is thus very robust (adding the reaction
A+A — A does not change anything...),... except in the
presence of disorder

» In principle, many possible experimental realizations:

» Catalytic reactions on a surface (CO+O — CO,)
> Growing interfaces
> Flowing granular matter i o
» Porous media

» Turbulent liquid crystals

Douady & Daer
> ...



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in

turbulent liquid crystals
(intermittent regimes between to dynamic scattering modes — DSM)

@ .

DSM1

34,858 V

FIG. | (color online). Spatiotemporal intermittency between DSM1 and DSM2. (a) Sketch of a DSM2 with its many entangled
disclinations, 1.¢., loops of singulantics in orientations of liquid crystals. (b) Snapshot taken at 35.153 V. Active (DSM2) regions appear
darker than the absorbing DSM | background. See also Movie S1 [8]. (¢) Binanzed image of (b). See also Movie S2 [8]. (d) Sketch of
the dynamics: DSM2 domains (gray) stochastically contaminate [¢] neighboring DSM1 regions (white) and/or relax [r] into the DSM1
state, but do not nucleate spontancously within DSM1 regions (DSM1 is absorbing). (¢) Spatiotemporal binarized diagrams showing
DSM2 regions for three voltages near the critical point, namely, 34.858, 34.876, and 34.900 V. The diagrams are shown in the range of
1206 pm X 899 pm (the whole observation arca) in space and 6.6 s in time.



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in
turbulent liquid crystals (scaling function)
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Dynamical Phase Transitions

Even n: the parity conserving (PC) universality class
(a “theorist’s curiosity”)
»d.>1,butd<5/3<2!
» Different critical exponents from DP (in d=1, 8= 0.4, 0= 0.2)

» Strong numerical corrections to scaling (DP ??7?)
» No analytical (even approximate) results available



Conclusion

Reaction/aggregation processes:

» Are ubiquitous in Nature
» Appear at all spatial and temporal scales

» Offer rich physical properties (dynamical phase diagram,
fractals, dynamical scaling...)

» Involve all the modern tools of theoretical physics
(field theory, renormalization group, perturbative and non
perturbative methods, sophisticated numerical methods...)

Thank you for your attention



