Control of dispersion effects for resonant ultrashort pulses

M. A. Bouchene, J. C. Delagnes

Laboratoire « Collisions, Agrégats, Réactivité », Université Paul Sabatier, Toulouse, France

Context:

- Dispersion distorts the pulse. The sample is excited by a different field.
- A lot of physical and chemical processes depend on pulse temporal shape and phase

Shaping devices are limited:

- ·Wavelength
- ·Passive : No Amplification, Cannot create new frequencies

Resonant atomic dispersion and light-shifts may be an alternative

At atomic resonance:

- Gain
- Modification of pulse shape

- 1. Propagation of ultrashort pulses
- 2. Direct compensation with a pulse shaper
- 3. Case of an ultrashort pulse train.
- 4. Propagation in an atomic system driven by a strong pulse
- Towards « active » pulse shaping

1. Propagation of ultrashort pulses

a) Non resonant medium

- Transparent

- Dispersion:

$$\phi(\omega) = n(\omega)\omega L/c$$

$$\phi(\omega) = \phi_0 + \phi_0'(\omega - \omega_L) + \phi_0''(\omega - \omega_L)^2/2$$

ω_0

1. Propagation of ultrashort pulses

b) Resonant (two level system)

Total absorption negligible:

$$\Gamma << \Delta_D << \Delta \omega$$

Dispersion :

Optical depth

Rubidium, 4S_{1/2} -- 4P_{1/2} τ_0 =75fs; α_0 I Δ_d =3THz;

COMPENSATION?

$$\phi(\omega) \simeq \frac{\alpha_0 L \Delta_D}{\omega - \omega_0}$$

Cannot be developed around central laser frequency

Second order no longer representative
All order are involved

2. Compensation with a pulse shaper

640 pixels phase-amplitude SLM: 0,06 nm

Compensation with a pulse shaper

 τ_{FWHM} : 120 fs, $\lambda = 794,76 \ nm$

 $Rb:5^2S_{1/2} \to 5^2P_{1/2}, \alpha_0L \simeq 21500$

Efficient Compensation

Up to 85% of the incident energy recovered below the initial pulse envelop

Origin of Limitations:

1. Pixelisation: under-sampling (0.06 nm)

Finite spot size for each spectral component
When Laser spot covers 2 Pixels

$$\varphi(n+1) \neq \varphi(n)$$
: Interferences

 \Rightarrow Spectral hole around λ !

Compensation with a pulse shaper

- ·Asymptotic part well reproduced
- ·Unable to reproduce exact behaviour near the resonance
- ·Spectrum intensity is afffected

Flat Phase

3. Case of an ultrashort pulse train

- · Independent pulses: Intensity superposition.
- · Mutually coherent pulses: Field superposition.

----- Depends on both ϕ and ${\sf T}$

PHASE CONTROL OF DISPERSION EFFECTS

4. Propagation in an atomic system driven by a strong field

Modifications due to the Strong Field (effect of Relative Phase and Intensity)

On the energy and temporal Profile of the propagating pulse

Rb atom $4s S_{1/2} \rightarrow 4p P_{1/2}$

Coherent Control of the Gain

- Crossed polarisation!
- Interference at $2\omega_L$ in one photon transition!!!!

Interpretation

1- « Ordinary » interference in one photon transition (Temporal Ramsey fringes)

Looking at the population the excited state:

$$n_f = 4n\cos^2\phi/2$$

Interference between two absorption paths phase-shifted by $\phi=\omega_L \; t_a$

2- Our situation

Interference phase 2ϕ

Emission Path

- 1- Interf. between absorp. and emis. paths connecting two linear superp. of states
- 2- Interference phase $2\dot{\phi}$, $\dot{\phi} = \omega_L t_a$ the phase with respect to the strong field. 3- The two paths are « synchronous » (phase shifted but not delayed!)

Dressed state analysis

$$|\pm\rangle = \frac{\mp |a\rangle + e^{-i\omega_0 t} |b\rangle}{\sqrt{2}}$$

$$|b\rangle \qquad \qquad |+\rangle$$

$$|a\rangle \qquad \qquad |a\rangle \qquad \qquad |-\rangle$$

$$|a\rangle \qquad \qquad |-\rangle$$

Action of the weak field

Two situations

$$\phi = \frac{\pi}{2}$$

$$|\uparrow +\rangle$$

$$|\uparrow -\rangle$$

Transparency window Non-resonant

Absorption/amplification Resonant

Dependence vs Strong Field energy at Zero Delay

Control of the Shape

5. Towards « active » pulse shaping

Classical devices (pulse shaper)

Passive: no amplification

no creation of spectral components

Strongly driven system

Active: create new frequencies (light-shift)

Transient Light Shift in a 3 level Ξ system

Varying Dipole Frequency

+

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_0 \left(t' \right) - \omega_L \right) dt'$$

Fixed Laser Frequency

Fixed Dipole Frequency

+

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_{0} - \omega_{L} \left(t' \right) \right) dt'$$

Varying laser Frequency

Chirped pulse propagation: principle

·Self-induced heterodyne field

·Mapping of the incident field phase on the intensity profile

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_{0} - \omega_{L}(t') \right) dt'$$

·Direct basic temporal shaping

Chirped pulse propagation: experiment

Depth of modulation increases with the density

Conclusion

- Atomic system at equilibrium:
 Compensation of Dispersion for a weak pulse and a pulse train
- Strongly driven atomic system:
 2ω Oscillations on one photon transition
 - Coherent Control of Energy
 - Coherent Control of the pulse Shape and possibility of active pulse shaping