VI. Coherent Control

Quantum mechanics, though a probabilistic theory, gives
a ‘“deterministic’ answer to the question of how the present
determines the future. In essence, in order to predict future
probabilities, we need to (numerically) propagate the time
dependent Schrodinger equation from the present to the

future.

L I . I R =L



VI. Coherent Control

Quantum mechanics, though a probabilistic theory, gives
a ‘“deterministic’ answer to the question of how the present
determines the future. In essence, in order to predict future
probabilities, we need to (numerically) propagate the time
dependent Schrodinger equation from the present to the
future. The field of Quantum Control deals with an important
modification of this task, namely, it asks — given a wave
function in the present, what dynamics (e.g. the Hamiltonian)
guarantees a desired outcome ( “objective”) in the future?
In practice one can modify the Hamiltonian by introducing
external fields (e.g. laser light). It is then possible to reach the
objective in a "trial-and-error” fashion: to guess a Hamiltonian,
propagate the initial wave function to the future, compare the

result with the desirable objective, and correct the guess for
the Hamiltonian until satisfactory agreement with the objective

is reached.



A systematic way of executing this procedure is the

sub-field called Optimal Control

This trial-and-error method is very time consuming,
requiring the repeated solution of the time dependent
Schrodinger equation. When the explicit time-dependent terms
in the Hamiltonian merely serve to prepare a state which
then evolves in the absence of an external field, or when its
explicit time dependence can be treated adiabatically, there
exists a much more elegant method, called Coherent Control
(CC) which necessitates the solution of the (time-independent)
Schrodinger equation, and this only once. Moreover, in that
case, the CC solution allows for the simultaneous exploration of
other possible future outcomes (and not just a single “desirable”
objective) resulting from different preparations of the initial

wave function.



V1.1 The Principles of Coherent Control

When discussing photodissociation we have seen that much
of the difficulty in controlling future events arises from the
generation of entangled states, leading to many possible future
outcomes. We now show how to overcome this difficulty
and disentangle material states, thus giving rise to just one,

pre-chosen, future outcome.



V1.1 The Principles of Coherent Control

When discussing photodissociation we have seen that much
of the difficulty in controlling future events arises from the
generation of entangled states, leading to many possible future
outcomes. We now show how to overcome this difficulty
and disentangle material states, thus giving rise to just one,

pre-chosen, future outcome.

We consider a photodissociation process of the type,

A + BC, q=1
ABC™ ABC* —{ B + AC, q=2 .

C + AB, q=3

under the action of a light field of the form

E(t) = €s(t) = E/dwe(w} exp(—iwt).



| f there Is only one |FE;) “precursor’ state,

_]_ t , ,
bEn(t) = h <E:-”_|d|E1>/ dt's(t' )by (1)) et @B —wa)t

— 30

and the branching ratio to observe different final states is given at

all times as
Pon(t) _ |bea(®)|* _ ' (E,n~|d|Ey) |
Pr m(t) br m(t) (E,m~|d|E")

and no control over this quantity via manipulation of laser

fields appears possible.
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This argument motivates the idea that the way to control
photodissociation is to use more than one “precursor’ state,
or in greater generality, to use multiple excitation pathways to
the same continuum state. We thus first extend the treatment
of the previous lectures to the photodissociation of initial non-

stationary superposition states,

x(t)) = Z bi(t)| E;)e Bt/



This argument motivates the idea that the way to control
photodissociation is to use more than one “precursor’ state,
or in greater generality, to use multiple excitation pathways to
the same continuum state. We thus first extend the treatment
of the previous lectures to the photodissociation of initial non-

stationary superposition states,

x(t)) = Z bi(t)| E;)e Bt/

Numerous experimental techniques can be used to create
the x(t) state. Whatever the method of preparation, the
amplitude and phase of b;(¢) and matrix elements connecting

| E;) to the continuum are functions of the experimentally

controllable preparation and excitation lasers parameters.



With (%) as the initial state the system wave function can
be expanded as,
[W(t)) = 32 ba(t)e 5t /R By )+
S g J AEbp o)~ P/ Eynyq)
Assuming that the field does not directly couple the |E;)
bound states (because e.g., its Fourier components are far off
resonance with respect to the w;; = (E; — E;)/h transition

frequencies), we obtain a set of equations identical to the ODE

obtained previously

: i i N _

(1) = 5 [ 4B (0 BB e d| Byng bona(t).
n,q

OE g = %Z{E,n?qﬂé-d|E.i)E(t)ei'wEriEb1-(t) ,all Ein,q.



Solving the second equation for the continuum coefficients

we obtain

t
iw 31‘,
bE nq(t) = hZEnq €-d|E;) Ldts( NeE b(t) .



Solving the second equation for the continuum coefficients

we obtain

t
iw 1'1‘,
bE nq(t) = hZEnq €-d|E;) Ldts( NeE b(t) .

As a result, the photodissociation probability is given by

2

PT‘;,Q}(E) = |bE,n,q(:x')

2
1 S (EB,n, q_|i§-d|Et-_}/ dte (1) Bath,(1)
0

2
h ;
i

Note that it is no longer possible to factor out the pulse
parameters from the above expression. We say that the light

fields have been “entangled” with the material system.



VI1.2. Weak field bichromatic control

In the weak field limit we can assume that the
initial coefficients do not get significantly depleted by the

photodissociating pulse and equate b;(t) ~ b;(0) = b; to

i) / dte(t)e' B
0

2

obtain that
2
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VI1.2. Weak field bichromatic control

In the weak field limit we can assume that the
initial coefficients do not get significantly depleted by the
photodissociating pulse and equate b;(t) ~ b;(0) = b; to

obtain that
2

P(E) =

(%)

Thus, the probability to produce at infinite time a free state

T|€- d|E!-_}/ dte(t)e' B
0

2

(E,n,q |e-d|E;)e(wg ;)

| E.n,q;0) involves multiple interfering pathways. In each
pathway a different on-resonance €(wp ;) Fourier component of

the laser pulse connects a different precursor state | E;) to the

same continuum state | E,n,q™ ).



By changing the amplitude and phase of these Fourier components (i.e., by
“shaping” the pulse) we can affect the nature and magnitude of the
interference between all the pathways. Since this interference

is affected also by the (F. n,q |é- - d|E;) complex matrix

elements, it is possible to induce destructive interference in

one fragment channel and constructive interference in another,

thereby achieving the desired channel selectivity.
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Of particular interest is the probability of being in a complete
subspace of states, denoted by the label g, given as,

Py(E) = Z Prq(E) = Z |‘!3'E,’m-41f|2 :

1
J.;HI

l.e., PQ(E) — (Qw/ﬁ)? Z [bib;e(wg,z-)e*(uJE?j)]dq(j'i) 3

1,7=1

where dq(ji) = Z(Eﬂé -d|E,n,q )(E,n,q" |&-d|E;).

T

The branching ratio between two channels at energy F,

R, y(FE), which we control below, is then,

Rq,q’(E) — PQ(E)/PQ’(E) -



Analyzing the structure of P,(FE') we see that the diagonal
terms (i = j) give the standard probability, at energy
E, of photodissociation out of a bound state |E;) to
produce a product in channel ¢. The off-diagonal terms
(i # j) correspond to interference terms between these
photodissociation routes. These interference terms describe

the constructive enhancement, or destructive cancellation of

product formation in subspace g.



Analyzing the structure of P,(FE') we see that the diagonal
terms (i = j) give the standard probability, at energy
E, of photodissociation out of a bound state |E;) to
produce a product in channel ¢. The off-diagonal terms
(i # j) correspond to interference terms between these
photodissociation routes. These interference terms describe

the constructive enhancement, or destructive cancellation of

product formation in subspace g.

The probability expression we obtained is important in
practice because the interference terms have coefficients

bibje(wr,i)e*(wE ;)] whose magnitude and sign depend

upon | experimentally controllable| parameters. Thus the

experimentalist can manipulate laboratory parameters and, in
doing so, alter the interference term and hence control the

reaction product yield.



The probability expression displays another important
feature: The entire control map, i.e. Py (E) or R, 4(E)
as a function of the control parameters, is a function of only
the d,(ji) molecular parameters. As a consequence, the
experimentalist need only determine these few parameters in
order to produce the entire control map. This statement
constitutes the weak field version of "“Adaptive Feedback

Control”.



The probability expression displays another important
feature: The entire control map, i.e. Py (E) or R, 4(E)
as a function of the control parameters, is a function of only
the d,(ji) molecular parameters. As a consequence, the
experimentalist need only determine these few parameters in
order to produce the entire control map. This statement
constitutes the weak field version of "“Adaptive Feedback
Control”. In the general strong field regime, a numerical non-
linear search procedure must be performed, to achieve a desired
optimization, whereas in the weak-field regime, because of the
simple bi-linear dependence of each P,(E) on the b;é(wg ;)
experimental parameters, we need only carry out ¢ x N?
measurements to determine all the d,(ji) coefficients. Once
these coefficients are known, the bi-linear P,(FE') function can
be analytically interpolated to give any desired branching ratio

between, and including, the extrema of R, ,(E).



Experimentally attaining control by this scenario requires
a light source containing N frequencies w;, (i = 1...N).
Both pulsed excitation with a source whose frequency width
encompasses these frequencies, as well as excitation with N
Continuous Wave (CW) lasers of frequencies w; = wg ; , (i =

1...N) are possible approaches.



Experimentally attaining control by this scenario requires
a light source containing N frequencies w;, (i = 1...N).
Both pulsed excitation with a source whose frequency width
encompasses these frequencies, as well as excitation with N
Continuous Wave (CW) lasers of frequencies w; = wg ; , (i =
1...N) are possible approaches. Here we focuson N =2, i.e.
the effect of two CW lasers on a system in a superposition of

two states, a scenario which we call “bichromatic control” .

faly




Let us consider two parallel CW fields of frequencies w;
and w- incident on a molecule and tune the w; and wo
frequencies such that, ws —w; = (F; — E>5)/h, we have that
P,(E) at energy E = E; + hw; = E5 + hws, only has two
contributions, corresponding to the excitations shown on the

left hand side of the Figure.

P,(E = E, + hw,) is given[3] by,

g 21\ * 2 21 s .
where P,(i1) = - bi|“|e(wi)|“dgq(i7) , 1 =1,2,
21\ ? : -
and F,(12) = (?) 2R, bible(w:)e(wq)e’?2790d, (12)

where ¢; = o(w;).



Defining
r = % | €12 =arg(b) — arg(bs)
1)01

dg(ij) = |dg(ij)|exp(iag(ij)) , @12 = ¢1— 02,

with a,(ij) termed the “material phase”, we have that

Py(E) = |dg(11)] 4 2°|dq(22)] + 2z cos(¢r,2 + &1,2 + 24(12))|dg(12)].



Defining \
r = % . €12 = arg(b) — arg(ba) |
1)01

de(ij) = |dg(ij)|explicg(ij)), ¢12=¢1— 2,
with a,(ij) termed the “material phase”, we have that

Py(E) = |dg(11)] 4 2°|dq(22)] + 2z cos(¢r,2 + &1,2 + 24(12))|dg(12)].

The branching ratio, R, ,(F) = Py(E)/Py(FE), is given as,

[dg(11)[ 4 2%|dg(22)] + 2z cos(P1.2 + €1.2 + g(12))|dg(12)|

R, (E) =
0/(B) (dgr(11)] + 22[d/(22)] + 22 cos(y .2 + €10 + a(12))[d(12)]

Varying ¢;5 or x, changes the interference term and thus gives us

control over the dissociation probabilities. These changes may be accomplished

either by varying the coefficients of the initial superposition state, {b;}, or

by changing the intensity and relative phases of the dissociation lasers.



V1.3 Controllability

We now ask the question, what is the best we can do
concerning the control of the population of an entire sub-
space using just two frequency “knobs”? Considering just two
subspaces ¢ and ¢’, each containing many n channels, it
is clear that in order to maximize the probability in one ¢
!

subspace we must minimize the probability in the other ¢

subspace.
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Since the above expression has two positive ( P;; and Pss)
terms the minimum is attained by making the interference term

as negative as possible and this is attained when

COs [(_,f?]___g -+ 61,2 - E}:qf(]_g)] = —1 .

namely when d12+& 2 =T —ay(12).



With this condition we obtain that

PIE) = |dg(11)| + 2?[dg(22)| — 2z|d(12)].

Equating P;I””(E) — 0. The equation has a solution provided

that the discriminant vanishes, i.e., that

|dt1r"(12)|2 — |dq’(11)||dq’(22)|*

The above condition is fulfilled identically when the ¢

space contains only one n channel. In that case we can get

perfect control and there is one =z value
2™ = |4y (12)/dg (22)

which guarantees that PJ"'"(E) = 0.



With this condition we obtain that

PIE) = |dg(11)| + 2?[dg(22)| — 2z|d(12)].

Equating P;I”'”(E) — 0. The equation has a solution provided
that the discriminant vanishes, i.e., that
|‘:1-:;r"(12)|2 = |dg(11)[[dg(22)].

!

The above condition is fulfilled identically when the ¢
space contains only one n channel. In that case we can get

perfect control and there is one =z value
2™ = |4y (12)/dg (22)

which guarantees that P7""(E) = 0. In all other cases we

know by the Schwarz inequality that

2
g (12)[* < [dg (11)]]dg(22)],



and PE‘*”(E) > 0, i.e., perfect control is unattainable in
general. The situation becomes progressively worse as the

number of n channels in each ¢ manifold increases because
‘d@'(lg)‘ - | Z(Elﬁ ) d|E,ﬂ-, q_>{Eaﬂa q_|€ ’ d| EE}‘

becomes smaller and smaller due to increasing phase averaging.
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number of n channels in each ¢ manifold increases because
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VI1.3.a. A Numerical Example

As an example of this approach we consider control over
the relative probability of forming 2P;/5 vs.  2P; /5 atomic
iodine, denoted | and I*, in the dissociation of methyl iodide in

the regime of 266 nm,

GHg + I*(E_Plf'g) — CHgI —* CHE + I(Epgfg) .



This reaction is an example of electronic branching of

photodissociation products. The results reported below are

for a non-rotating two-dimensional collinear model in which

the H; center-of-mass, the C and the | atoms are assumed to

lie on a line.



This reaction is an example of electronic branching of
photodissociation products. The results reported below are
for a non-rotating two-dimensional collinear model in which

the H; center-of-mass, the C and the | atoms are assumed to

lie on a line.
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Contour plot of the yield of CHy +I from the photodissociation CH3l from a superposition

(3) |x(0)) = ai1|E1) + as| Ea),

(b) [x(0)) = ai1|E1) + as|Es)

of states at w; = 37593.9cm™ '



V1.4 Energy Averaging and Satellite Contributions

In general, experiments measure energy averaged quantities such as
P = [dER®E), Ry = R/R,

since products are not distinguished on the basis of total
energy. As such, it is necessary to compute photodissociation

to all energies.
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energies: E = FE; + hw, = Ey + hws, 3| g 3 | g
E' = E, + hwy, and E" = Es+ hw;. E,
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V1.4 Energy Averaging and Satellite Contributions

In general, experiments measure energy averaged quantities such as

P, = [dEP(E), Ry = PPy,

since products are not distinguished on the basis of total

energy. As such, it is necessary to compute photodissociation

to all energies.

_________ __| g
For the case considered : two states

T E
irradiated with two CW fields of frequencies |
wy and ws, F,(E) is nonzero at three T R
energies: | E = FE; + hw, = Ey + hws, 3| g 3 | g
E'=FE, + hwy, | and | E" = Es> + hw;. E,




PQ(E:El—l—hudl:Eg—l—hqu) —

(2'”) bi€(wi)|*dg(11) (2;) boe(w2)|*dg(22) +

h
controllable
(%’”) IR, bubie(wr)e(ws)e @29, (12)
P,(E'=E; + hw,) = (2;) bre(ws)]*d,(11) uncontrollable
Py(E" = FEy + hwy) = (2;) boe(w)]?d,(22). uncontrollable

Thus, the overall P, for N = 2 is given by,

“satellites”

Y N\
Pq = PQ(E = El—l—hwl)—l—P{I(Er = EI—Fﬁwg)—I—P{I(E” = Eg—l—hwl) .

The latter two terms correspond to traditional photodissociation

and are uncontrollable .
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Contour plot of the yield of I” (i.e. fraction of I" as product) in the photodissociation of
CHasl starting from an M —averaged initial state.

(a) wi = 39,639 cm™ ', (b) w; = 42,367 cm™ .

In both cases wy = (E; — E3)/h + wy



We note that there is no interference between terms of
different energies. This is a general principle which plays
a role in all control scenarios. The reason for it is that
products of terms of different energies contain oscillatory

exp|i(FE; — E5)t/h] term which average out to zero with time.



VI.5. Control of the direction of electronic motion:
current without voltage!

(G. Kurizki, M. Shapiro, P. Brumer, Phys. Rev. B, 39, 3435 (1989)).

As another application of the above formulation we
now discuss a scenario in which we interfere a one-photon
process with a two-photon process in order to control the
directionality of electronic currents in semiconductors and other
environments. This scenario is of extreme importance as it
relates both to the frequency comb measurements and the

diagnostics of attosecond pulses, but its discovery in 1989

In this scenario we irradiate the material system by two
fields, 2R.e; e~ wit—id1 inducing a one-photon transition, and

2R ey e~ 2692 where wy = w;/2, inducing a two-photon transition.



Given an initial |k,) semi-conductor valence-band state, and
that both processes are in resonance with transitions to

k.) conduction-band states, the probability-density in the
conduction-band, P(k.), is given as the square of the sum of

one-photon and two-photon amplitudes. Explicitly,

P(ke) = |f(ke)[”

with f(ke) o €1p, ™1 + €2d, e~ 212
pﬂ lpl (4
= (ke |plky) =
where  Pew p| , ey Z hwy —
with Pivo = (kilplky) pei = (ke|pl ki)

being the momentum matrix elements between the initial /final

state and all intermediate states |k;) of energy FE;.



1

: _ _ 5
Squaring and separating out P, = |e1peo|” + |2de|

the non-interfering sum of one-photon and two-
photon probabilities, from the interference term,
2R, {€pt, e2depe’®172921) ie twice the real part of the
product of the one-photon and two-photon amplitudes, we can

write P(k.) as,
P(k.) o< Ppon + Ping cos (a(1,2) + ¢ — 2¢2)
where  Pi,¢ = |€6163peaden|, with  a(1,2) denoting the
“material” phase of the p. d., product.
We see that we can control the sign of the interference

term and hence whether the interference be constructive or

destructive, by varying @1 — 2¢s.
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Experiment: E. Dupont, P.B. Corkum, H.C. Liu, M. Buchanan, and Z.R. Wasilewski,
Phys. Rev. Lett. 74, 3596 (1995)



How is the DC created?
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We see that a phase difference that results in the interference
being constructive in the forward direction leads to destructive
interference in the backward direction, and vice versa.
Depending on the ¢, — 2¢, relative phase the injection rates
into the | 4 k.) states can be different, resulting in the
generation of a DC electric current, j. o f ke P dke # 0
( j» # Je), in the conduction (valence) band of the

semiconductor.



A new twist: creating DC and AC currents in nhanowires

|. Franco, P. Brumer, MS, PRL 99, 126802 (2007)
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Adiabatic passage

15

1>

3 states adiabatic passage

K. Bergmann et al.
Rev. Mod. Phys., 70, 1003 (1998).
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VI1.6. Bound state controllability
Adiabatic passage
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3 states adiabatic passage A new feature:

wave packet-to-wave packet
adiabatic passage via a single state

K. Bergmann et al. P. Kral, I. Thanopoulos and M.S.,
Rev. Mod. Phys., 70, 1003 (1998). Rev. Mod. Phys., 79, 53 (2007).
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“Loop” adiabatic passage

P. Krdl and M. Shapiro, Phys. Rev. Lett. 87, 183002 (2001)
P. Kral, I. Thanopoulos, M. Shapiro, and D. Cohen, Phys. Rev. Lett. 90, 033001 (2003).

I. Thanopulos, P. Krdl, and M. Shapiro, J. Chem. Phys. 119, 5105 (2003)
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VI.¥ Coherent Control beyond the weak field limit

Beyond the weak field limit one can no longer neglect
the variation in the initial coefficients during the pulse. By
substituting the solution of the continuum coefficients into the

equation for the bound coefficients we obtain,
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i 1.0

f dEe= B/ E (& d| E,n,q” )(E,n,q"[¢ - d|E)by(t') .
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Beyond the weak field limit one can no longer neglect
the variation in the initial coefficients during the pulse. By
substituting the solution of the continuum coefficients into the

equation for the bound coefficients we obtain,

_ EZZ / dt's(t')e i(E;t—E;t') /R

i 1.0

d

f dEe= B/ E (& d| E,n,q” )(E,n,q"[¢ - d|E)by(t') .

Assuming that ( Ej|é-d|E,n,q™ ) varies slowly with E we
can use the so-called Slowly Varying Continuum Approximation

(SVCA) to replace it by its value at some representative energy E:

(Ejlée-d|E,n,q )~ (E;|e-d|E,n,q ).



With this approximation, the last integral becomes
/ dEe~E—")/M B |e . d| E,n,q )(E,n,q"[é- d|E) ~
(E;|e-d|E,n,q" )(E,n,q"|¢-d|E,) f B~ E—)/h _

2rh{Ejle-d|E,n,q” Y(E,n,q”|é-d|E;)é(t — 1) .



With this approximation, the last integral becomes

/ dEe~E—")/M B |e . d| E,n,q )(E,n,q"[é- d|E) ~

<EJ'|E'd|Eﬂﬂrq_><Eanaq_|é'd|Ei}dee_iE(t—z’);h:

2rh{Ejle-d|E,n,q” Y(E,n,q”|é-d|E;)é(t — 1) .

Using this equation and the identity fﬂt dt'5(t —t') = 1/2, we obtain that,

d 2 zw i I
—b;(t) ZE 34T ;.4(E)bi(t)

where T';;(E) are elements of the “width” matrix '(E),

Ehz 3|Ed{ZIEﬂq (E,n,q |}@-<fl|£‘7i>E S ri(E),

q

where F{q (E) are the partial width matrix elements,

L% (E) zhz Ej|e-d|E,n,q” )(E,n,q | &-d|Ei) .



It is clear that the w;; are the most important Fourier components of |s(t)*.

We now consider a pulse composed of discrete Fourier components of the form,
e(w) = Z gid(w—wg;)+edlw+wr,) .
i
As a function of time this pulse is a discrete sum of Continuous Waves (CW)
e(t) = ng exp(—iw;t) + c.c. ,
i
whose intensity is given by
£(t)?* = Z (I s exp(—i(wy — wi)t) + Jy ; exp[—i(wy 4+ wi)t] + c.c.]
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It is clear that the w;; are the most important Fourier components of |s(t)*.

We now consider a pulse composed of discrete Fourier components of the form,
e(w) = Z gid(w—wg;)+edlw+wr,) .
i
As a function of time this pulse is a discrete sum of Continuous Waves (CW)
e(t) = ng exp(—iw;t) + c.c. ,
i
whose intensity is given by

e(t)* = Z (I s exp(—i(wy — wi)t) + Jy ; exp[—i(wy 4+ wi)t] + c.c.]

i’

where Iy =cepel . Jy,; =cpg;

Setting w; = wpg,; = (E — E;)/h and neglecting the very fast

2 we have that

Fourier components of |e(%)|* associated with Jj

-.III"



J(t ZZ {Iz" i exp (“‘JJ (A ( i’ — wi”)t]+

i .II.F 'I”

I swexpli(wy,i + (wir +wir)t] } T (E)bi(t)

Keeping just those terms for which w;; — (wyr +w;») = 0 or

wji+ (wy +wir) =0, ie., i =jand i’ =1, we have that

= —ij,irj,@(E)bi(t)



J(t ZZ {Iz" i exp (“‘IJ (A ( i’ — wz’”)t]+

.FH

I swexpli(wy,i + (wir +wir)t] } T (E)bi(t)

Keeping just those terms for which w;; — (wyr +w;») = 0 or

wji+ (wir +wir) =0, ie, i =7jand i’ =1, we have that

— Z Ij?.il_‘j,g(E)bi(t)

By eliminating the continuum we have obtained a discrete
number of coupled differential equations. The results can then
be used to obtain the photodissociation probability. In addition
to the diagonal I';; terms, which describe the decay of each
bound state to the continuum, the off diagonal T';; terms allow

for laser-induced population transfer between the bound states,

in what amounts to a stimulated resonance Raman process via

the continuum.



Thus, a strong pulse whose power spectrum encompasses the w;; component,
would, even if operating on a single precursor | E;) state, give rise in a short
time to the formation of a superposition of |E;) states (i.e., the |x(%))

state of Bichromatic control). Pulse shaping thus acts not only to modify the

photo-excitation to the continuum, but also to modify the composition of the

of the precursor |x(t)) state.
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Thus, a strong pulse whose power spectrum encompasses the w;; component,

would, even if operating on a single precursor | E;) state, give rise in a short
time to the formation of a superposition of |E;) states (i.e., the |x(%))
state of Bichromatic control). Pulse shaping thus acts not only to modify the

photo-excitation to the continuum, but also to modify the composition of the

of the precursor |x(t)) state.

V1.7 Resonantly Enhanced Two-Photon Association

|2>
Resonantly enhanced two photon association , o,
Is depicted schematically in the Figure.
The significance stems from the possibility - En®
of using it to form ultra-cold molecules. )

Those laser cooling schemes that 1>

work for atoms tend to fail for

molecules, mainly due to the presence of many near-resonance lines .



Rather than cooling warm molecules one can try
to synthesize cold molecules by associating cold atoms.
The molecules thus formed are expected to maintain
the translational temperature of the recombining atoms,
because the center-of-mass motion remains unchanged in the
association process (save for the little momentum imparted

by the photon) .



Rather than cooling warm molecules one can try
to synthesize cold molecules by associating cold atoms.
The molecules thus formed are expected to maintain
the translational temperature of the recombining atoms,
because the center-of-mass motion remains unchanged in the
association process (save for the little momentum imparted
by the photon) . This idea was first proposed by Julienne
et al. who envisioned a multi-step association, first involving

the continuum-to-bound excitation of translational continuum

states of cold trapped atoms to an excited vibrational level in
an excited electronic molecular state. This step was followed by

a bound-bound spontaneous emission to the ground electronic

state.



An undesirable feature of this scheme is that the
spontaneous nature of the second step allows the molecules to
end up in a large range of vibrational levels. As a consequence,
the use of stimulated emission discussed below, is preferable
because it allows population transfer to a particular final

molecular state of interest.
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A. Vardi, D. Abrashkevich, E. Frishman, and M. Shapiro, J. Chem. Phys. 107, 6166 (1997).



An undesirable feature of this scheme is that the
spontaneous nature of the second step allows the molecules to
end up in a large range of vibrational levels. As a consequence,
the use of stimulated emission discussed below, is preferable
because it allows population transfer to a particular final

molecular state of interest.

VI.7.a Theory of Photo-Association of a Coherent Wave Packet

In photoassociation the initial state is the scattering state
and the goal is to transfer the population to the final bound
state | E1) . We therefore consider a pair of colliding atoms
described by scattering states | E,n™ ) with n incorporating
the quantum indices specifying the electronic states of the
separated atoms and FE being the total collision energy. The
plus notation signifies, in contrast with the minus states that
were previously used to describe dissociation processes, that

the initial state of the fragments is known.



We focus attention on a A-type system,
subjected to the combined action of two laser
pulses of central frequencies w; and wy .

Here ws is in near-resonance with the

transition from the |E.,n™ ) continuum
: ) \ 1>
to an intermediate bound state |E2 |

and w;y iIs in near-resonance with the

transition from |FEs) to |E;) .
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We focus attention on a A-type system, 12>

subjected to the combined action of two laser ® 4

pulses of central frequencies w; and wy .

.. i +
Here ws is in near-resonance with the - [E.n =
O]

transition from the |E.,n™ ) continuum \

|1:=-

to an intermediate bound state | E> )

and wj is in near-resonance with the
transition from |FEs) to |E;) .

We then solve the Schrodinger equation by expanding the total

wave function as before, with the notable exception that here

the incoming solutions | E,n~ ) are replaced by the outgoing

solutions | E,n™ ),



(W(t)) = by(t)| By )e P17 4 by(t) ()| Eo )e*F2t/M 4

We obtain a set of first-order differential equations, which is

now of the form

#01(t) = 197 (t)e 2 1"bo(2) |
Lho(t) = i (£)e2 1" (t) +i [dE Y, Qo pu(t)e A Ebp 4(t) |
Lo n =15 5 (1) PED(1)(1) for all £ and n ,

where
(1) = (Yo|dr- & | Er)esr(t)/h
Qo Bn(t) =(1Po|dsy - &| E,nT)e(t) /R,
Ay =(Fy — Ey)/h —wy,
Ap = (F - FEs)/h — ws.



Contrary to photo-dissociation, in photo-association, the
continuum is initially populated. Therefore, the formal solution

of the continuum coefficients is,

t
bpn(t) =bra(t=0) —I—-i/ dt’ ;,E!n(t')emﬂ’bg(t’) .
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Contrary to photo-dissociation, in photo-association, the
continuum is initially populated. Therefore, the formal solution

of the continuum coefficients is,

[#
b a(t) = b a(t = 0) + i / A ()2 b () .

0

Substituting this solution into the equation for ba(t) gives

Lho(t) = iQ ()€ 2100 (t) + i), [ dEQg g o(t)e A EDg 4(0)
— S0 JAE [5 dt'Qo g n(t)Q g (1) exp [—iAp(t — )] ba(t') .

When the molecular continuum is unstructured we can invoke
the SVCA and replace the energy-dependent bound-continuum

dipole matrix-elements by their value at the pulse center, given

(in the A configuration ) as Ep = Fy — hws .



This is the case, for example, for Nas at threshold energies, where
the bound-continuum dipole matrix-elements vary with energy by less than

1% over a typical nsec-pulse bandwidth. Within the SVCA we obtain

dby(t)
dt

= i (1)e' 217Dy (t) — To(t)ba(t) + iF (1)
where  F(t) = e(t)d2(t) /R ,
Bit) = Y [ dBalds -2 B e 5 bp0(0).
I'5(t) of the above is defined (in analogy to the CW case) as,

Fg(t) = (?T/ﬁ)&‘g(t) Z(EJ |EZ ’ d2| Ean—l_ }(Ean—l_ | '%2‘ d2|Et> .

T



The first-order differential equations can be expressed in matrix notation as

d . .
priche iH(t) - c(t) +f ,

where f and ¢ are column vectors defined as, f(t) = (0, F(t)),

C = (Ei‘&ltbh bg(t)), and

Ay O
Ho=| ° ' ].
o Ql 1l



The first-order differential equations can be expressed in matrix notation as

d .
priche iH(t) - c(t) +if

where f and ¢ are column vectors defined as, f(t) = (0, F(t)),

C = (\‘“:_‘1:";‘&'“11"-151j bg(t)), and

A O
Hoy=( " " |-
_ Q, iy

The “net association rate’ R(t) is the rate of population-
change in the bound manifold, given by 2(|bi[* + |ba(t)[?) .

It can be written as,

R(t) = & (1b1]* + [b2(0)[*) = gElcl* = ¢t - (Fe) + (g<f) - c =
-a'{g-( (1) —H(@0)") e+t -t cf =

L [F*(£)b2(t)] — 2Ta(t) [b(1)]*



The first term in represents the association rate,
Rpee(t) = 20, [F*(t)ba(1)]

and the second term is the back-dissociation rate,

As expected, the net association rate is the difference between

the association rate and the back-dissociation rates.
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The first term in represents the association rate,
Rpee(t) = 20, [F*(t)ba(1)]

and the second term is the back-dissociation rate,

As expected, the net association rate is the difference between

the association rate and the back-dissociation rates.

We can solve these differential equations adiabatically by

diagonalizing the H(t) matrix,
T _
U (t)-B() - Ut) = AQ),
where gT is the transpose of U.

Operating with gT and defining a(t) = QT(t) - ¢, we obtain that

a=(iA(t)+A) -a+ig,



where A = (dg-r/dt) -U is the non-adiabatic coupling matrix.

g is a column ( “source”) vector whose transpose is given as

g (1) = (F(t)Ul__g(t),F(t)UQ,g(t)) = (F(t)sinf(t), F(t) cos6(1))

When A is neglected (the adiabatic approximation) we obtain

that



where A = (dg-r/dt) -U is the non-adiabatic coupling matrix.

g is a column ( “source”) vector whose transpose is given as

g (1) = (F(t)Ul__g(t),F(t)UQ,g(t)) = (F(t)sinf(t), F(t) cos6(1))

When A is neglected (the adiabatic approximation) we obtain

that

a=iA(t) -a(t) +ig(t) -

In the association process the initial conditions are such that
a(t=0)=0,

so that the adiabatic solutions are

where y(t) = exp (i[;é(t’)dt’) , and 4q(t) = *i/;g_l(t’) -g(t')dt" .



The by(t) and bao(t) coefficients are thus given in the

adiabatic approximation as,

bi(t) = i {0059 ) o dt'et Ty M (")t F(t')sinf(t)
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Given by(t) , the (channel-specific) continuum coefficients

br n(t) can then be readily obtained.



The by(t) and bao(t) coefficients are thus given in the

adiabatic approximation as,

bi(t) = i {-::DSH ) [, dt’e’ fur M(t")at” F(t')sinf(t)

—sind(t) [ dt'e’ Jur da(t")dt” F(t") cos6(t )} e—iAIL
bo(t) = i {sint? (t) [ dt'et fr M)t F(t")sinf(t")

+ cos 6(t) fn dt'et i 22 (t")at” F(t") cosO(t )}

Given by(t) , the (channel-specific) continuum coefficients

br n(t) can then be readily obtained.

It is clear that the source term F(t) is linearly proportional to the pulse amplitude.

On the other hand, since Q3 >0 and ' < ¢, the exp (— [y ['2(t")dt") factor

(describing dissociationback to the continuum) decays exponentially with increasing

intensity. Thus, merely increasing the laser power does not necessarily increase

the association yield. There exists some optimal intensity, beyond which the

association probability decreases.



As an example of this formulation we consider pulsed photo-
association of a coherent wave packet of cold Na atoms. The
colliding atoms are described by an (energetically narrow)

normalized Gaussian packet of J = 0 radial waves:
W(t=0)) = /dE bs(t = 0)| E, 35 + 3s)

where | F,3s + 3s) are the translational Na-Na s-waves with

the atoms in the 3s state, and by at time zero is taken as

bi(t =0) = (65m) " *exp {—(E — Eca)?/20% +iAgto} .

Here, 1o denotes the instant of maximum overlap of the
Na-+Na wave packet with the | E5) state. In the simulations,
E.o1 , the mean collision energy, varies between FE.; =
0.00695 — 0.0695cm~! =~ 0.01K — 0.1K and the wave packet

widths, dp , vary over the range dp = 107%* —103em~1 .



State | Ey) is chosen as the (X'X},v=0,J =0) state and | E,) as

(A'SH, v = 34,J = 1)
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Thus, the combined effect of the two laser pulses is the
transfer of population from the continuum to the ground vib-
rotational state (X'X¥ v = 0,J = 0) , with the bound

(A'¥F v = 34,J = 1) state acting as an intermediate
state. The “counter-intuitive” scheme where the “dump”
pulse £1(t) is applied before the e2(t) “pump” pulse eliminates

spontaneous emission losses



Thus, the combined effect of the two laser pulses is the
transfer of population from the continuum to the ground vib-
rotational state (X'Yf,v = 0,J = 0) , with the bound

(A'¥F v = 34,J = 1) state acting as an intermediate
state. The “counter-intuitive” scheme where the “dump”
pulse £1(t) is applied before the e2(t) “pump” pulse eliminates

spontaneous emission losses

The appearance of an imaginary Rabi frequency, such as
il'5(t), which is due to the presence of a continuum, may
change the range of validity of the adiabatic approximation.
A ‘“large area” ( [ )dt) pulses no longer guarantees that we
can neglect the non-adiabatic coupling matrix A. Despite

this fact, we show below that with the proper choice of pulse

parameters, an effective “dark state” can be formed.
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Rates of association, ( Pe.) back-dissociation ( Fyss) and total
molecule-formation ( P) in the “counter-intuitive” scheme. Dashed lines -
pulse intensity profile, dotted lines - effective Rabi frequency.

1 Other pulse

(a) Initial wave packet width of &z = 107* cm
parameters as in the previous Figure. (b) The same dynamics scaled by
s = 10: Initial wave packet width of dép = 10~* em~! ; durations of
both pulse - 85 nsec; pump (dump) pulse peaking at t; = 200 (150)
nsec. Peak intensity of the dump (pump) pulse - 1.6 x 10° W/cm? (

3.1 x 10® W/cm?). From Ref. [5].
A. Vardi, D. Abrashkevich, E. Frishman, and M. Shapiro, J. Chem. Phys. 107, 6166 (1997).

Both pannels appear identical, though in pannel b the abscissa is scaled up

by a factor of 10 and the ordinate is scaled down by a factor of 10.



The scaling behavior demonstrated here is due to the
This scaling is obtained

existence of exact scaling relations.
when the initial wave packet-width and the pulse intensities are
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The scaling behavior demonstrated here is due to the
existence of exact scaling relations. This scaling is obtained

when the initial wave packet-width and the pulse intensities are

scaled down as S 0 & 0 €9

op ——, & ——, €3 — —=

S s NCR

and the pulse durations are scaled up as Aty 5 — At »s.

It follows from the definition of F'(¢) that under these

transformations
_ F(t/s Q1 o(t/s
P(i)ﬁ‘*f;z(ﬁ)— (S/) ; ,5(;/)

and the set of ODE becomes

dc’
dt/s

= iH(t)(t/s) - ' +if(t/s)

where ¢’ denotes the vector of solutions of the scaled
equations. Thus, the scaled coefficients at time t are identical

to the un-scaled coefficients at times /s .



One of the results of the above scaling relations is
that the pulses’ durations can be made longer and their
intensities concomitantly scaled down, without changing the
final population-transfer yields. As noted above, lengthening
of the pulses is beneficial because it causes more atoms to

recombine within a given pulse.



One of the results of the above scaling relations is
that the pulses’ durations can be made longer and their
intensities concomitantly scaled down, without changing the
final population-transfer yields. As noted above, lengthening
of the pulses is beneficial because it causes more atoms to

recombine within a given pulse.

There is a range of pulse parameters (such as the pulse
area, {2y p, Aty) that maximizes the association yield for a
fized initial wave packet. For both the “intuitive” and the
“counter-intuitive” schemes there is a clear maximum at a
specific pulse area; merely increasing the pulse intensity does
not lead to an improved association yield. We can attribute this
behavior to the fact that the association rate [ R,...], increases
linearly with increasing pulse intensity, whereas dissociation

rate | Raiss| increases exponentially with the intensity.



Experimental confirmations of photoassociation via two
photon transition as discussed above have been obtained.

Evidence that counter-intuitive pulse ordering might result in

large photo-association cross-sections as suggested above has
also been presented. Of especial significance is the experiment
of Winkler et al. where a dark state such as the one predicted
above has been observed in the photoassociation of Rb BEC
to form Rby BEC. As shown in the Figure as the intensity of
the dump laser is lowered a dark state causing the system to

“decouple” from the laser fields is seen to be formed. .
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Formation of dark state in photoassociation of Rb BEC. Taken from
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J. Hecker Denschlag, Phys. Rev. Lett. 95, 063202 (2005).



shaped shaped
laser laser
pulses pulses

axt

Potential ener gy

................................

13)

Internuclear distance

KRDb potentials and Piecewise Adiabatic Passage Ref.[8]
Evgeny A. Shapiro, Avi Pe'er  Jun Ye, Moshe Shapiro, Phys. Rev. Lett. in press
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(a): Populations of A*S-bI1 states following a single pump pulse;

(b):Quantum carpet showing the evolution of the b*IT component of the
b*11-A'Y wave packet. Amplitude of the wave function a each point
is shown by brig_htncs:ﬁ, its phase by color

(c): Correlation of the time-dependent excited state with that

immediately after excitation. Time is measured relative to

the beginning of the pump pulse.

Evgeny A. Shapiro, Avi Pe’er ,Jun Ye, Moshe Shapiro, Phys. Rev. Lett. in press
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Spectrum (a,c) and time-dependant field (b,d) of the pump (a,b), and
dump (c.d) pulses. The phase of the spectral components in Panels (a,c)

is shown by color.
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Dynamics of the STIRAP-like PAP in KRb. (a): Envelopes of the pump (dashed blue)
and dump (red) pulses. (b): Population dynamics of all the levels in the system.
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