I. The dynamics of quantized particles
and classical light fields

We start by writing the total classical Hamiltonian of N
particles whose charges and Cartesian positions are denoted as

;. T in the presence of a classical electromagnetic field,

1 dr ; .
Hiot :Z—m;; (E) + Ve + Hp.
J

Ve is the “Coulomb” energy Ve = Z qiP(r;)

where ®(r;) is the electrostatic potential felt by particle 7 due

to the action of all particles with j < 1,

N 47reg Z |1"1 — rj|

ri.



Hence Vi can also be written as

qdj
Vo = 4?TE.;.ZZ I ——

PR — 1]

Hp of the above is the cycle averaged radiative

Hamiltonian, given in terms of all the modes amplitudes Ay
as,

Hp = 2(27)% / &k K2 AL

where A(r,t) is the electromagnetic vector potential

Due to the presence of this vector potential

., p; - the
(generalized) momentum of the j* particle - is given (in
Cartesian coordinates) as b, drj A(rj,t)

j .

Hence, in terms of p;, the total Hamiltonian is given as

A(I 1)
Hipt = ngj (pj’ q; .

2
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We now quantize the material part by imposing,

We have that

1 . qq 2
Htﬂt — ZH (—Eﬁvj — ;A(Tjt)) ‘I‘VC —I—HR =

Hiot = Hy + H'(t) + Hp.

Hp was defined above. Hjs, the material Hamiltonian, is

defined as

Hpy = Z —\72 + Ve.

H'(t) is the “interaction Hamlltonian”,

E

H’(t)—zqu V- A(rj, t) + =——A%(t) =

~ Qm 2
j
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where we have used the Coulomb gauge (V - A(r,t) = 0)

to obtain that
Vj-A(rs,t)| ) = A(rs.t) - Vy| ).

We note that (gauge) transformations of the type,
A—-A'"=A+Vy,

- P =P — 1@_}(
cot’
where v is any scalar field, leave the E and B fields invariant.

The Coulomb gauge is obtained by choosing y such that

Vix = -V A.

The above condition does not completely fix the vector and
scalar potentials because any additional gauge transformation

( “sub gauge”) with \’ satisfying VY’ = 0 still leaves V-A = 0.



Choosing a sub-gauge defined via
X' = —r-A(r,1)
hence
VX'=—-V(r-A)=—A—-r(V-A)—(rxV) x A
and due to the Coulomb gauge
Vx'=—-Vr-A=—A—-(rxV)x A
Neglecting the second term which is associated with the
magnetic field (which couples more weakly than the electric
field to the material system) we have that
Vx'(r) =~ —A.
Therefore, in this approximation,
V2x' = —-VA =0,

and we are still in the Coulomb gauge.



With the neglect of the magnetic field this Gauge

transformation has eliminated A while modifying ®(r,?) to yijeld,

OA(r;,t
Hmtzz VQ—FZ% [ rj)"‘ —g; )] + Hp

j

Using the relation between the electric field and the vector potential,

JA(r;.t
ZQ‘J ' (1‘3 ) qurj En(r;,t),

where Ep is the radiative (“transverse”) component of the

electric field, recasts the total Hamiltonian as,

hi
Hmzz Vg—l—VC—ZI‘jvER(I‘j,t)—I—HR
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The above form involves the exact charge distribution and the

full coordinate dependence of Ep.



The dipole approximation

The wavelengths of visible radiation, ranging between
0.3um — 0.7um, are very large compared to molecular sizes.
Under these circumstances we can invoke the

“dipole approzrimation”, Eg(r;,t) = Eg(2,t).
where 2z is some fixed point, (say the molecular c.m.).

H;,; now assumes the form,

hi
Hio =) —5—V3+Ve—d-Eg(z,t) + Hg,

_ 2.
F J

where d is the electric dipole, d = Zj qirj-



The time dependent Schrodinger equation of the material

wave function W(t) in the dipole approximation is,

W) = H(1)W(t) = [Hog + Hagnl)]0(),

where H(t) = Hyr + Harr(t) is the part of the Hamiltonian

operating on the material wave function, and

Hyp=-d- ER(E? t).



Il. Photo-excitation of a Molecule with a
Pulse of Light

Using the radiation-free basis set,
HM| En > — Enl En }
we can expand U(?) as,

U(t) =) b(t)| By e Ent/M,

with b, (t) satisfying the following set of ordinary differential

equations,

dbﬁt(t) = (1/ih) Zn: bu(t)e" " (Em|HyR(t)] En ) -

Wnn = (Em — Ey)/h.



The molecule is initially (t = —oc) in a single state | E ),
bi(t = —o0) =1, and bi(t = —o0) =0 for k # 1,

If the perturbation is weak

/ dt|( By | Har(t)| B, Ye™t| /h < 1,

¢
b(t) = _dma1 dt’e"_”mrltxe(,z t') =
T 'E,-h . 1

_dma mdwé(w) t dt' et (@m1 =)t
in | . "

[ o]

where

dmi = (En|d- € Ey),

and we have factored the electric field vector as Eg(z,t) = € (2, )

oo

with & being the polarization direction and  £(2,t) = / dwe(w)e™ ™"

— OO

being the magnitude of the field.



The Fourier transform, €¢(w), can be a complex number, which we
write as a product of an absolute value and a phase factor,

e(w) = |e(w)|eile@)rwz/e]
with wz /e = k - r along the z (pulse propagation) direction.

To obtain ¥(t) as t — +00 we use the

/ dt'etlom 1=t — 26 (w1 — w), identity,
leading to
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bin (+00) = %dm,le(wm,l) = gdm,ﬂe(wm,ﬂ|€t'[¢(wm*1]+“mflzfﬂ].

At infinite times or after the pulse is gone, a material energy
level E, only absorbs or emits on resonance modes, satisfying
W=Wm1 O W=—Wn1 -

This need not be the case while the pulse is on.



I1l: State Preparation During the Pulse

At finite times, while the pulse is on,

t

bin(®) = (B [9(0) = g [ dte(t)eioma

— o0

and the probability of observing the | E,,, ) state is

Prn(t) = [( Em [T (1)) " = [bm(t)]” .
In the single mode (or Continuous Wave - CW) limit,

e(w) = ‘%”[5@ — wa) + 8w+ wy)],

or, £(t) = meple et 4+ '] = 2meq cos(wat).



We obtain that
[

bon(t) = (i/B)don 1 / dt’e(t’)e““”malf:%dm*l}l(t),

where +
A(t) = lim [ dt’ {e""(“ﬂ—wmrﬂt’ + e‘“"""“*“"m’”f} i
T

T—oo |

For absorption (emission) the first (second) term is called
the “Rotating Wave” (RW) term. When we are in “near
resonance”, i.e., w, = wpy (absorption), or w, ~ —wp1
(emission) we can invoke the Rotating Waves Approzimation

(RWA) in which we only retain this term.

For absorption we have that
E-i.&t —iAT
At) = — lim

e

Y VAN




We first deal with the CW case. The limit T" — o¢ is now
awkward because it involves an endlessly oscillatory term. We
therefore choose to examine the case in which we know that
the system existed at t = 0 in state | E; ). The lower limit now
becomes T = 0 and we have that

t L E-i&t_l
A(t) = dteidt — 2 T °
0= J 4 = =5

Hence,
bm(t) _ iWEde’lEi%ﬁ —1 _ ’iﬂfﬂdm,lEf&tﬂsm(‘&t/g)
and

omeod,, 1\~ sinZ(At/2
Rn(t):( . 51) 81/2)



At short times sin?(At/2) ~ A%t2/4) and

2
?[-E{]dﬂl.‘]_t
Palt) = (7052

The rate is defined as

?TEndm.J) ’ "
h

Ry (t) = dP(t)/dt = 2 (

Under these circumstances we never reach a constant rate.

sin(At/2)
A

As t — oo, — 2m0(A) and we recapture the resonance condition

The difficulties arose In going to the CW limit before performing the integration.

Realizing that in real life, the CW case is a limit of the

pulsed case for infinitely narrow pulses, we now examine the

pulsed case for which, bm(t) = (i/h)dm.16(Wm,1)cm(t),
o0 (W, 1—w)t
where, cm(t) = ! f dwe(w)— :
€(wm.1) J_o i(wm1— w)



For a Gaussian pulse,

_ 2
E(ﬁ) — ¢, e 4In2(I't) e tw“t—kﬂ.c.j

for which  €(w) = W‘éea&e_ﬂziw_“ﬂjgj

where a =1/(4T'In*/22).
we have that,

em(t) = sgn(t')2m {6(2) = (1/2)e” Wisgn(t)8]

where,

and W|z] is the complex error function.

We have that,
em(t) — 0, for t < —1/T,

and cm(t) — 2w, fort > 1/T .



Pulse preparation coefficients
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Figure 1: The absolute value of the preparation coefficients

divided by the pulse peak amplitude during the pulse.



For w,, 1 near the line center, ¢,,(t) rises smoothly to its
asymptotic value. However at off-center energies ¢,,(t) does
not rise so monotonically: At the end of the pulse, for an

absorption process (FE,, > E1),

4 21 »
U(t> 1/T) = e M4 == e(wma)dm 1pme ™ /0

m

The absorption of a photon has created a wave packet in
which the coefficients of preparation are proportional to the

field amplitude at the w,, ;1 frequency.

During the excitation pulse

o 1 | ,
IP(f) = e Eqt/h + ﬁ ; cﬂl(t)f('i""m-,l)d-m.,lwm.e Emtfﬁ.



As shown in Fig. 1, for wy, 1 near the line center, ¢, (%) rises
smoothly to its asymptotic value of 2. However at off-center
energies ¢,,(t) does not rise so monotonically: At early times all
the ¢p,'s respond to the field in almost the same manner since
the system has insufficient " information” to determine the true

spectral composition of the pulse. It therefore “thinks” that

it is exposed to a much broader band of frequencies, hence

a more slowly varying €(A). Only at later times does the

system “realize” its “mistake” and corrects for it by depleting

the off-center ¢,,(t)'s.
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Figure 2: The real part of the preparation coefficients divided
by the pulse peak amplitude during the pulse.
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Figure 3: The imaginary part of the preparation coefficients

divided by the pulse peak amplitude during the pulse.



In the extreme case of detuning i.e., when €(wm. 1) ~ 0,
although the probability of observing the level after the pulse
is essentially zero, ¢,,(t) during the pulse is not necessarily
zero. [his means that the level in question gets populated and
de-populated during the pulse. In the usual jargon what we
have described here is a virtual state. The above description of
a light dispersion process gives a physically meaningful content
to the concept of a virtual state, which is often treated as a

pure mathematical construct.
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At the end of the pulse, W(¢), obtained by substituting
the resonance condition in the expansion of W(t) in the | E}, )

states, is given for an absorption process (E;, > E1) by,

U(t > 1)T) = pre” F1t/hy (2mi/h) ZE(wm.,1)dm_,m!me_“"E"l”ﬁ.

T

Thus, after the pulse, the absorption of a photon has created
a wavepacket in which the coefficients of preparation are

proportional to the field amplitude at the w,, 1 frequency.

During the excitation pulse the above picture must be

corrected and we obtain that,

U(t) = -J,b1e—f.E1afﬁ. + (i/h) ZCm(t),g(wm‘.l)qulwme—iEmI/h.

m



IVV. Photodissociation and Scattering Theory

We now discuss scattering theory and photodissociation with a

pulse of light, both associated with the presence of a continuous

When the spectrum of the material Hamiltonian has a

continuous part we have that
[E{ — HM”EE} = [E — HM” EJ’L) =0

where m designate any additional quantum number. In the

presence of a laser pulse whose electric field is parametrized as,
ER(t) = & Roe(t)e Wat,

where w,, called “carrier” frequency, represents the average

frequency in the spectrum of the pulse €(w). (%) is called the

“envelope” of the pulse.

spectrum.



We expand the full time-dependent wave function as,

U(t) = by(t)| By e /M + 3 / dEbg o(t)| B, n)eE/R
In first order perturbation theory this expression becomes,
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U(t) = —

Z/dEE(uJEJ)(E?n|d|E1}|E? n)e tEU/R,

The normalization of the constituent states

(E'm|E,n)=06(FE— E")om.n-

Um(E, R) = ( R|E,n) has dimensions of [L]~'/2[E]~1/2



A triatomic molecule - ABC, which breaks apart to yield,
the (¢ = 1) A+ BC channel or (¢ = 2) B + AC channel.

H; is composed of three parts,

Hy = Krp+ K, + 1[’][”T(:|;{.:h I‘).

it and m being the reduced masses,

p=ma(mpg+me)/(ma+mp+me), m =mpme/(Mmp + me).

and wv(r) is the asymptotic limit of W(R,r) as A departs from B —C,

v(r) = 12151130 W(R,r).



The A — BC interaction potential, defined as,
V(R,r) =W(R,r) —v(r)

vanishes as R — oq,

lim V(R,r)=0.

R— oo
Defining the B — C' Hamiltonian as,

h, = K, + v(r)

we have that

Hy =Kgp + hy + V(R, I‘).

The interaction potential V(R,r) couples the motion of the

A atom to the motion of the BC.



The eigenstates, of the free Hamiltonian

Hy= Kgn + h-r?

denoted as | E/,m;0), satisfy the

|[E' — Hy|| E,m;0) =0,

eigenvalue relations. They are given as products

| E,m;0) = e, )| E —epn)

where lem — he]|em ) =0,

with e,, denoting the internal (electronic, vibrational,

rotational) energy of the B — C diatomic, and
|[E —em — Kr||E —em) =0,

describing the free (translational) motion of A relative to BC.



[E— e, +7°/2u)VR] (RIE —e,) =0

is a plane wave of kinetic energy E — ¢,,,
(R|E —e,) = pikm R
where km = {2u(E — e,) /2 /R,
The free states are normalized as,
(E',m;0|E,n;0) =6(E — E")opm n-
Relating the free states to the fully interacting states:
[E — Ho|| E,n) =V|E,n),
can be solved formally as, |E,n)=[E — Ho| 'V|E,n)

to which we need to add a general solution | E.n;0) of the

homogeneous part that equation.



We obtain that |E,n)=|E,n0)+[E — HD]_1V|E:-“}

Using the spectral resolution,

| E',n;0)(E',n; 0]
E-E

[E—Ho ! = de’

we have that,

dE,|E,?1.;D)<E,n;O|V|E,ﬂ.}

E, = | E.,n:0
Bin) = | E,ns0) + | =

The [dE’ is ill defined in the Riemann sense. In the Cauchy
sense we consider the limit of a series of well defined Riemann
integrals by adding a small ie imaginary part to E, calculating
the integrals and finally letting € — 0. The limiting value thus
obtained depends on the sign of €. We consider adding ie or

subtracting i€, with € > 0.

|E,n%T)=|E,n;0) +£EI':1I[E:EE'E—H{]]_1V|E}H:E}.



Each is the Lippmann-Schwinger equation. The + solution
is the outgoing solution, and the — solution as the incoming
solution. Each solution is an independent solution of the
full Schrodinger equation. They are not independent on (and
definitely not orthogonal to) one another, so we can use either

one or the other.

After the pulse we have that

ZMZ/“IEE Ft/he(wp 1) ( E,n* |d| By )-

{|E,n;0> +[Eiie—Hg]_1V|E,,ni}}.

Using the spectral resolution of [E 4-ie — Hy]~! the probability

of finding a free state | E/,m;0) at time t is

(E',m;0|¥(t) 2"”2](1}39 Bt/ he(yp ) (E,nE |d| By )-

(E'm;0|V|E,n%t)
E'm:0/E.n:0 : .
{< m 0B 0) e



Using the normalization of the free states

’ 271 —iE! /
(B'ms0|0(t) = == M e(wpr 1) (E',m*|d By )+
(E,n*|d| EL){ E'm;0|V|E,n* }}

dE —iEt/h g,
Zﬂ:/ e ewra) E+ic— F'

In the t — oc¢ limit the integration over E' can be performed

analytically by the contour integration depicted in Fig. 4

Figure 4: Contour integration used to explore the long time limit.



Noting that in that limit, the integrand on a large semi-
circle in the lower part of the complex-E' plane is zero, due to

the fact that when E = Re™ with 6 < 0,

_ o 18 s . B T— o0
e iEt/h _ e iRe™t/h _ e ERcohEtfﬁERamEtfﬁ 0

The real E integration remains unchanged by supplementing it
with integration along the above large semi-circle in the lower
half E-plane. Since in the —ie case, the integrand has a pole
at E = E' + ie which is outside the closed contour, the whole

integral is zero. We obtain that,

271 -
lim ( E',m;0|U(t) = %E(ME,!,IJE_EE YR(E' m™|d|Ey).
f— o0 )
Hence the coefficients of expansion of the full wavepacket in

terms of the | E,m™ ) states, tell us immediately what is the

probability of observing states | E,m;0) in the distant future.



V. Photodissociation beyond perturbation theory

In going beyond perturbation theory we first discuss

strong field photodissociation from a single ( “precursor” ) state.

we again consider a molecule breaking up into two or more

structured fragments, A-B— A + B.

We expand W(t), obtaining the usual set of o.d.e.,

T8 — (8, ] 1) (1)ba (8) exp [i(wp.1 — wa)f].

mh% = — deZn:d(HE,n)E(t)bE,n(t) exp[—i(wg,1 — wa)t]

where wp 1 = (E — E1)/h, and we have invoked the rotating

wave approximation.



Substituting the formal solution
1 t y -
bEn(t) = —d(E,n[1) / dt's(t')by (1)) e WE1—wa)t
l — 20

we obtain that,

db dE t / Nn,—ilwpi1—w —t' /
d—QZ‘/ —5 A1 (E)e(t f dt'e(t') e mamen) =y (¢)

where A{(E) =Y |d(E,n|1)? is the absorption spectrum
from state |FE;). According to this integro-differential
equation the change in by at time t depends on its history
at all preceding times ¢’ < t. The e(t')e =i («“r1=wa)(t=1") factor

is called the "memory-Kernel” of the integral equation.

Given the Fourier transform of the spectrum A(F)

F(t-t)= f dE Y |d(E,n|1)?e~ (=) = / dEA;(E)e~ra(t=t)



we have that

dby  —1
d

t
- = TQE(t)/ dt' et =g (") Fy(t — t' )by (t)).
i 1 o

If A1(F) is slowly varying we can replace it by its value
A¢(E,) at the center energy of the pulse (E, = E{ + fiw,). In

that case the above equation transforms into,

Fi(t—t') ~ Al(Eaj/dEe_WE,lit—i’} _ h‘/\dwEble_infl(I_tf) _

2mhA1(Eq)d(t —t').
Using this equation and remembering that we integrate t’ from

—0o0 to the singularity point £, which introduces a factor of %

we obtain that dby

T = IO ba(),

b1(t) = b1(—oc) exp [% fj Ez(tf)dt’] .

whose solution is



The above is a statement of what may be termed the
“slowly varying continuum approximation” (SVCA). We see
that in this approximation by (#) decreases monotonically with

time, though not necessarily as an exponential function.

The SVCA need not be assumed for the continuum
coefficients themselves, because once we know bq(t) we can

solve for by ,,(t) with no further approximation.
Assuming that bi(—x) =1,
the bp ,, coefficients are given as,

-1 L
bpa(t) = Ed[E,nH) / dt's(t") expli(wg 1 — wa)t']:

!

I
exp _E/ e2(t")dt" | .



We now show that Fji(t) is proportional to the
temoral correlation function of a wavepacket formed by an

instanteneous pulse. Setting €(w) = €,, a constant, we obtain

e(t) = /dwe(m)e_mt = Ea/ dwe™ ™" = 2me, d(t).

— 20

Given such a pulse, the wave function created from initial

state | Fy ) is given at t = 0 as

_ 2mieq
0, (0)) = 2T Z[dE’|E’ m~Y(E',m~ |d| E1 ).

At subsequent times it evolves to

_ 2miEq
W (1)) = 2T Z/dE|E n~V(E,n~ |d| E; e iE/M,

Using the (K", m~| E,n~ ) = §(FE — E')d,,., orthonormality,



2
WO W) = (F2) X [ dBI(ELa) B e -

2me 2 2me 2
(52’ fapmereon= (22) ro

Thus, the Fourier transform of the spectrum is also the

correlation function between a wave packet excited at £ = 0
from the | E'y ) state by the shortest possible pulse - a §() pulse
- and its value at subsequent times ¢. The Fourier transform
of the absorption spectrum is a self probe at ultrashort times

for a process in which the system is excited by the shortest

possible pulse!






