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Phase in quantum mechanics

Control of Pancharatnam phase with classical
light: Two-level system in semi-classical regime

Control of Pancharatnam phase with quantized
field: Trapped-ion

Control of Pancharatnam phase with static field:
Cooper pair box in a SQUID configuration



Phase in guantum mechanics

* Relative phase between two states|A)and|B)
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Phase in guantum mechanics

* Dynamical phase of state Iv)
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Phase in quantum mechanics

e Geometric phase of state |v»)

O oeom =arg((w Q) w (1))~ | lm((w\%\wjdt: Dpp — Dy,

e Connection with Berry phase : H=HR®)
H |w, (R)) = E, |, (R))

. o v @)=|y.ROY)
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Phase in guantum mechanics

* Important properties of Berry phase:
Dy, =1 GAR (1, (R)V v, (R))

Depends only on theC(cIose) path.

e Interrest for quantum information:

Insensitive to parameters that makes this path
unchanged
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Control of the Pancharatnam phase

 HERE:
Non cyclic regime.

Behaviour of the PP with excitation parameters
and comparison with population dynamics

Investigation restricted to simple g-bits



Control of the Pancharatnam phase

e Simple case : two level system in semi-classical

regime
|b> nb(t):C(W01A1t)+ D(WO,A,t)COS¢O
--------- 1 ’ an®. - A(W,,A 1)+ B(W,,A,t)cos ¢,
o, AW, AL L)+ BY(W,,At)cos ¢,

*Interresting parameter : @, =@ —a gr(a( 0)b™(0 ))
W =7W,e e [a)(b|+ hc
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) Needs initial coherence: Ramsey-like configuration



Two-level system in semi-classical

regime
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Schematic drawing of the electrodes for a
linear rf trap. A common rf potential U~
cos(vrft) is applied to the dark electrodes; the
other electrodes are held at rf ground through
capacitors (not shown) connected to ground.
The lower right portion of the figure shows the
x-y electric fields from the applied rf potential
at an instant when the rf potential is positive
relative to the ground. A static electric
potential well is created (for positive ions)
along the z axis by applying a positive potential
to the outer segments (gray) relative to the
center segments (white).

Trapped-ion
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Trapped-ion
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Trapped-ion

More complex system

Adiabatic elimin.

\e) of interme state +
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Parameters: Laser intensity; Laser phase; Laser frequency; Phonon number



Trapped-ion

D, Coherent state n =10, At=1, n,(0)=n,(0)=1/2 N




Trapped-ion

Coherent state m =10, At=1, n,(0)=n,(0)=1/ N
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Trapped-ion

D, oherent state n =10, At=1, n,(0)=n,(0)=Y N
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Single Cooper-pair box

H=4E, Zn:(n—ng )2\n><n —%Z(\n+l><n\+\n><n+l\)
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Effective Josephson
coupling energy

Cooper-pair box with a SQUID loop. ‘n - O> , By =0
E,,is the Josephson energy,
Vg is the voltage gate and o,
is the magnetic flux )
Effective two-level system

Control parameter: ¢, =7 @, /®,



Populationn,

Single Cooper-pair box
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Conclusion

e Comparison of PP with population:
greater sensitivity to control parameters

* Applications:

- Phase, flux: pertinent parameters for g-
bits manipulation

- Detection of small magnetic flux (Cooper-
box).

- Stabilisation of interferometers.



Two-level system in semi-classical
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