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Narrow Transitions, Broad LightNarrow Transitions, Broad Light

Atomic transitions ~ 1 GHz

10 fs pulse ~  100,000 GHz
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Nonresonant TwoNonresonant Two--Photon AbsorptionPhoton Absorption

Transition is induced by interference of
many trajectories:

Perturbation analysis yields:
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Transform limited pulses are most efficient, but:

Antisymmetric phase has no effect on transition 
probability 
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ω0= ωfg/2

Nonresonant TPANonresonant TPA



Nonresonant TPANonresonant TPA
scan of a periodic phase maskscan of a periodic phase mask
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Long, weak AM modulated pulses induce TPA just like transform 
limited pulses with the same energy

How long is long?

20 fs pulse modulated by a shaper could becomes ~10 ps
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Broadband downBroadband down--converted light (squeezed vacuum)converted light (squeezed vacuum)

Each beam is a broadband incoherent noise, ( ) ( )*2
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S. E. Harris, M. K. Oshman, and R. L. Byer, 
"Observation of Tunable Optical Parametric 
Fluorescence," Phys. Rev. Lett. 18, 732-734 
(May 1967).



Broadband down-converted light beams can induce TPA just like 
an ultrashort pulse with the same bandwidths
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when the pump frequency ωp is tuned to the two-photon overall frequency ωfg :
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A complete constructive interference, just like with a transform-limited pulse

TPA with SPDC LightTPA with SPDC Light



Broadband downBroadband down--converted light beams induce TPA just like a converted light beams induce TPA just like a 
pair of ultrashort pulse with the same bandwidthspair of ultrashort pulse with the same bandwidths
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0.04 nm= χ(2)
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But :

Temporal resolution of ultrashort pulses
(though the light can be continuous)

Spectral resolution of a narrowband laser
(though the light is as broadband as a pulse)
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Experimental ResultsExperimental Results
Temporal resolution as of 23 fs pulses,

5 orders of magnitude
Below the duration of the light (3 ns).

Spectral resolution as of the pump (0.04nm)
3 orders of magnitude

Below bandwidth of light (~100nm / beam)

Calculated

Experimental

B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Phys. Rev. Lett, 93, 023005 (2004)
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Controlling TPAControlling TPA

B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Phys. Rev. Lett, 93, 023005 (2004)



Spontaneous Parametric DownSpontaneous Parametric Down--Conversion Conversion --
the bithe bi--photon sourcephoton source

a pump photon is spontaneously converted into two lower frequency photons
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QCC with NonQCC with Non--classical Lightclassical Light

Can we shape a single photon?
Can we control with single photons?



Spontaneous DownSpontaneous Down--Conversion:Conversion:
TimeTime--Energy Entangled PhotonsEnergy Entangled Photons
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Gate

• The time DIFFERENCE between the photons behaves as a fs pulse

TimeTime--Energy Entangled PhotonsEnergy Entangled Photons

non linear crystal

pump (cw)

signal (cw)

idler (cw)

… so lets shape the two-photon correlation function !

• But electronics limits temporal resolution to ~ns

Shaper
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“Measurement of Subpicosecond Time Intervals between Two Photons by Interference”
C.K. Hong, Z.Y. Ou and L. Mandel, PRL 59 (1987)
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TwoTwo--Photon Coincidence Interference :Photon Coincidence Interference :
HongHong--OuOu--Mandel DipMandel Dip
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“Measurement of Subpicosecond Time Intervals between Two Photons by Interference”
C.K. Hong, Z.Y. Ou and L. Mandel, PRL 59 (1987)
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Shaper



HOM in polarizationHOM in polarization
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A. V. Burlakov et. al. , PRA 64, (2001)



Experimental SetupExperimental Setup
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Experimental ResultsExperimental Results

B. Dayan,  Y. Bromberg, I. Afek and Y. Silberberg,   in preparation.



Experimental ResultsExperimental Results

We can shape
the two-photon
correlation
function



Polarization Bell States Polarization Bell States 
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Entanglement of signal (ω>ωp/2) and idler (ω<ωp/2) photons



Nonlinear Optics with Single Photons ?Nonlinear Optics with Single Photons ?

χ(2)

HOM correlations are nice, but HOM correlations are nice, but 
wouldnwouldn’’t it be nicer to havet it be nicer to have
direct detection of photons ?direct detection of photons ?

TPA ?   SFG ?



Nonlinear Optics with Single PhotonsNonlinear Optics with Single Photons

SumSum--Frequency GenerationFrequency Generation
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Coincidence detection through Coincidence detection through 
SumSum--Frequency Generation (SFG)Frequency Generation (SFG)

CW PUMP 
χ(2)

SIGNAL (CW) 

IDLER (CW) 

χ(2)

910~ −1610~ −s 1310 −−≈ s×
typical flux SFG efficiency SFG signal

Delay

Delay
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A photon-pair per time-bin  

How many How many ‘‘single photonssingle photons’’ can arrive in one second ?can arrive in one second ?

(How high can (How high can ‘‘low light levelslow light levels’’ be ?)be ?)

n=1 photon per mode

The photon-pair arrives within 1/Δ



Down-converting
crystal

SFG
crystal

pump 
532nm
5W

IR detector

Beam 
dump

SPCM

Dispersion
compensation

Computer

SFG with Entangled PhotonsSFG with Entangled Photons

PP-KTPPP-KTP
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~40,000 s-1



Quantum mechanical analysis of SFG
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1995: Kimble’s group
measures a slope of 1.3
at low photon numbers
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Intensity Dependence of SFG 
with Entangled Photons

0nα( )0
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"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons", 
B. Dayan, A. Pe’er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005)



Intensity Dependence of SFG 
with Entangled Photons

"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons", 
B. Dayan, A. Pe’er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005)
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Intensity dependence of SFG with entangled photons

nα

"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons",                       
B. Dayan, A. Pe’er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005)
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"Temporal Shaping of Entangled Photons",
A. Pe’er,  B. Dayan,  A.A. Friesem and Y. Silberberg,   Phys. Rev. Lett. 94, 073601 (2005)

Temporal shaping of the twoTemporal shaping of the two--photon wavefunctionphoton wavefunction
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Two-photon interference



Two-photon interference
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Two-photon interference
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Two-photon interference
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Two-photon interference

ωh

:  1for  B>>Δτ
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RT RT

Electronic detection is not fast enough,

χ(2)

…But SFG is !



Two-photon interference

:  1for  B>>Δτ
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Two-photon interference

:  1for  B>>Δτ
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Two-photon interference
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Background-free two-photon interference oscillations



Background-free two-photon interference oscillations



HOM Interference in a couplerHOM Interference in a coupler

In coupled waveguides there is a π/2 phase between light in adjacent waveguides



Discrete DiffractionDiscrete Diffraction

Shaped laser Beam

Slab 
waveguide

Linear propagation

2D core

Discrete diffraction



The 1d waveguide latticeThe 1d waveguide lattice
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• The discrete nonlinear Schrödinger equation (DNLSE)
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• The Tight Binding Model (Discrete Schrödinger Equation)



Key Results:

Periodic Lattices:

Discrete Spatial Optical Solitons (1998)
Diffraction Management, (2000).
Self-Focusing and Defocusing, dark solitons (2001).
Modulational Instability (2002)
Vector Solitons (2003)
Band Structure and Floquet-Bloch Solitons (2003). 
Gap solitons (2004)
Surface states (2006)
Spatio-temporal effects (x-waves) (2007)
Quantum & Classical Correlations (2008)

Non-uniform arrays

Bloch Oscillations (1999).
Defect States (1999).
Binary Arrays (2004) 
Anderson Localization (2007) 



Quantum Correlations in ArraysQuantum Correlations in Arrays



TwoTwo--Photon CorrelationsPhoton Correlations

Experiments with entangled photons in waveguide 
arrays are tough

But there is a simple classical version…



19561956

HB&T claim that they have measured the angular size of Sirius by intensity correlations



The HBT experimentThe HBT experiment
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HBT and QOHBT and QO

HBT was a key point in the 
development of quantum 
optics. It was later explained in 
terms of particle interference.

HBT has been demonstrated 
since with electrons, pions and 
matter waves. It reflects  
quantum statistics, leading to 
bunching (bosons) or anti-
bunching (fermions). 

http://upload.wikimedia.org/wikipedia/en/4/46/TwoPhotonAmplitude.png


Discrete HBTDiscrete HBT



Discrete HBT CorrelationsDiscrete HBT Correlations
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Discrete HBT CorrelationsDiscrete HBT Correlations
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Nonlinear Discrete HBT !Nonlinear Discrete HBT !



We have seenWe have seen……

• Photon Correlations behave much like short pulses

• Shaping of photon correlations

• SFG for photon correlation measurements

• Quantum correlations in periodic structures
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