Atomic physics in Intense Laser Field

M. A. Bouchene

Laboratoire « Collisions, Agrégats, Réactivité », Université Paul Sabatier, Toulouse, France

Name	Laboratory	Country	Type	λ	Energy	Pulse length	Power	Focal spot	Intensity
				(nm)	(J)	(fs)	(TW)	(µm)	(Wcm ^{-2} $)$
2									
Petawatt ^a	LLNL	USA	Nd:glass	1053	700	500	1300	-	$> 10^{20}$
VULCAN ^o	RAL	UK	Nd:glass	1053	423	410	1030	10	1.06×10^{21}
PW laser ^c	ILE	Japan	Nd:glass	1054	420	470	1000	30	10^{20}
$PHELIX^d$	GSI	Germany	Nd:glass	1064	500	500	1000	-	
LULI 100TW	LULI	France	Ti:Sa	800	30	300	100		-
APR 100 TW	APR	Japan	Ti:Sa	800	2	20	100	11	2×10^{19}
HERCULES	FOCUS	USA	Ti:Sa	800	1.2	27	45	(1)	(8×10^{21})
ALFA 2	FOCUS	USA	Ti:Sa	800	4.5	30	150	(1)	(10^{22})
Salle Jaune	LOA	France	Ti:Sa	800	0.8	25	35		1019
Lund TW	LLC	Sweden	Ti:Sa	800	1.0	30	30	10	$> 10^{19}$
MBI Ti:Sa	MBI	Germany	Ti:Sa	800	0.7	35	20		$> 10^{19}$
Jena TW	IOQ	Germany	Ti:Sa	800	1.0	80	12	3	5×10^{19}
ASTRA	RAL	UK	Ti:Sa	800	0.5	40	12		10 ¹⁹
USP	LLNL	USA	Ti:Sa	800	1 (10)	100 (30)	10 (100)		5×10^{19}
UHI 10	CEA	France	Ti:Sa	800	0.7	65	10		5×10^{19}

Table 1.1 Multi-Terawatt laser systems and laboratories worldwide.

^a 1996–1999

^b Petawatt performance achieved on October 5, 2004.

^c Projected upgrade of PWM — PetaWatt Module.

d Commissioned for end 2005.

Table 1.1. Light intensities I (in units of W/cm^2) from the very dim to the extremely bright.

	130328	
	10^{+30}	\rightarrow generation of real electron-positron pairs from vacuum
av he	10^{+28}	\rightarrow electron acceleration by light comparable to edge of black hole
	10^{+26}	
	10^{+24}	\rightarrow nonlinear optics of the vacuum?
	10+22	
xtr.	10^{+20}	\rightarrow photonuclear fission – light splits puclei
	10^{+18}	\rightarrow relativistic nonlinear ontics of vacuum electrons
	10^{+16}	and and a spaces of vacuum creentons
eanty	10^{+14}	\rightarrow electrostatic tunneling of electrons from atoms
	10^{+12}	\rightarrow Rabi flopping in semiconductors becomes optical
adit. 🦯 🗸	10^{+10}	and sopping in bonnoonductors becomes optical
	10^{+8}	
	10^{+6}	\rightarrow laser intensity in the first experiment on nonlinear option in 1061
	10+4	1961 menory in the mat experiment on nonnnear optics in 1961
	10^{+2}	\rightarrow a continuous-wave laser of that intensity hurto
	1	\rightarrow total intensity of the sup on the earth's surface (10 ⁻¹ W (am ²))
	10^{-2}	\rightarrow thermal radiation from a human
	10^{-4}	
	10^{-6}	
	10^{-8}	
	10^{-10}	\rightarrow total intensity of the cosmic 2.8 K background radiation
	10^{-12}	total intensity of the cosmic 2.8 K background radiation
	10^{-14}	
	10^{-16}	
	10^{-18}	
	10^{-20}	
	10-22	\rightarrow visible intensity in a "dark" room at 200 V (10-23 xy - 2)
		W/cm^2)

OUTLOOK

- I- Free electron in an EM field: Classical treatment - Relativistic treatment
 - Quantum treatment
- II- Atom is a strong Laser field:

- Scenario with I
- Experimental results

- **III- Above Threshold Ionisation**
- **IV-** Tunnel ionisation

$$U_{\rm P}({\rm eV}) = 9.3410^{-14} \,\lambda_{\mu m}^2 \,I_{{\rm W/cm}^2}$$

$$U_{P} = \begin{cases} 1 \text{eV for I} \approx 10^{13} \text{ W/cm}^{2} \\ 100 \text{keV for I} \approx 10^{18} \text{ W/cm}^{2} & (U_{P} \approx 0.2 \text{mc}^{2}) \end{cases}$$

The electron is ejected

I-Free electron in an EM field: Relativistic treatment $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}); \quad E_x = E_0 \cos \omega t; \quad B_y = B_0 \cos \omega t$ electron at rest Relat. (pert reg. $U_p / mc^2 \le 1$) Newton Ē k e⁻ 2ω Photon draggin $(\mathbf{0})$ Ē,x† (b) (a) Radiation pattern Β,y 2ω

I-Free electron in an EM field: Quantum treatment

$$H = \frac{\left(\vec{P} - q\vec{A}\right)^{2}}{2m}; \quad \vec{E} = -\frac{\partial \vec{A}}{\partial t} = \vec{E}_{0} \cos \omega t$$
$$i\hbar \frac{\partial \Psi(\vec{r}, t)}{\partial t} = H\Psi(\vec{r}, t)$$

amiltonian:

chrödinger equation:

nalytical solution!

$$\Psi(\vec{r},t) = \Psi_0 e^{i\left(\vec{k}\cdot\vec{r} - \left(\frac{E_d + U_p}{\hbar}\right)t\right)} e^{i\frac{U_p}{\hbar}\left(\frac{\sin 2\omega t}{2\omega}\right)} e^{-i\frac{q\vec{k}\cdot\vec{E}_0}{m\omega}(\cos\omega t - 1)} \qquad E_{drift} = \frac{\hbar^2 k^2}{2m}$$

VOLKOV STATE

- STATIONNARY STATE BUT TIME DEPENDENT ENERGY

$$\begin{split} \textbf{VOLKOV STATE} \\ \Psi(\vec{r},t) &= \Psi_{0} e^{i\left(\vec{k}\cdot\vec{r} - \left(\frac{E_{d}+U_{p}}{\hbar}\right)t\right)} e^{i\frac{U_{p}}{\hbar}\left(\frac{\sin 2\omega t}{2\omega}\right)} e^{-i\frac{d\vec{k}E_{0}}{m\omega}(\cos \omega t - 1)} \\ \textbf{Classical part} \\ \textbf{Classical part} \\ (\vec{r},t) &= \Psi_{0} e^{i\left(\vec{k}\cdot\vec{r} - \left(\frac{E_{d}+U_{p}}{\hbar}\right)t\right)} \sum_{n} J_{n}\left(\frac{U_{p}}{2\hbar\omega}\right) e^{i2n\omega t} \sum_{m} i^{m} J_{m}\left(-2\sqrt{2}\frac{\sqrt{U_{p}E_{d}}}{\hbar\omega}\right) e^{im\theta} \\ \textbf{Even harmonics} \\ \textbf{Odd + Even harmonics:} \\ \textbf{New effects : } U_{p}, E_{d} \geq \hbar\omega \end{split}$$

$$\vec{V} = \vec{V}_0 - \frac{q\vec{E}_0}{m\omega}\sin\omega t;$$
$$E_k = \left(\sqrt{E_d} - \sqrt{2U_p}\sin\omega t\right)^2$$

 $E = E_{d} + U_{p} + n\hbar\omega$

II- Atom in a strong laser field

Model: Bound - Unbound transition for a single electron

7 Dynamica depende strengly on the lager intensity

Scenano with I

VALID IE | < | (doplotion of the ground state)

Experimental manifestation

Above Inreshold Ionisation: Important features

1- Cut off energy

 $2U_{P}$

Classical explanation.

 $E = E_0 \cos \omega t; v(t_0) = 0$ (electron created at rest)

$$E_{kin} = 2U_P \cos^2 \omega t_0 : 0 \rightarrow 2U_P$$

Drift motion even if $v(t_0)=0$ (phase shift effect)

Tunnel Ionisation

Tunnel Ionisation: Keldysh parameter

$$\gamma = \frac{\text{time needed to escape}}{\text{optical period}} \qquad \gamma = \sqrt{\frac{E_{\text{ion}}}{2U_{\text{P}}}}$$

 $\gamma < 1 \rightarrow$ Tunneling $\gamma > 1 \rightarrow$ Multiphoton Ionisation

onis. rate in the quasi-static regime (Amnosov, Delone, Krainov formula)

itially electron
$$|n^*, l, m\rangle$$
; $l^* = n^* - l$; $m = Z(2E_{ion})^{1/2}$ $m_e = \hbar = c = \frac{1}{2E_{ion}} \sqrt{\frac{3E_0}{\pi (2E_{ion})^{3/2}}} |C_{n^*l^*}|^2 f(l, m) E_{ion} \left(\frac{2(2E_{ion})^{3/2}}{E_0}\right)^{\frac{2Z}{\sqrt{2E_{ion}}} - |m| - 1} e^{\frac{2}{3E_0}(2E_{ion})^2} f(l, m) = \frac{(2l+1)(1+|m|)}{2^{|m|}|m|!(1-|m|)!} |C_{n^*l^*}|^2 = \frac{2^{\ln^*}}{n^*\Gamma(n^*+l^*+1)\Gamma(m^*-l^*)}$

Tunnel Ionisation: cut-off energies

Three-step model $E = E_0 \sin \omega t$

TRAJECTORIES

Recombinaison
$$\longrightarrow$$
 HHG plateau
 $t = t_1 \quad x(t_1) = 0$
 $\langle E_{kin} \rangle = \frac{e^2 E_0^2}{2m\omega^2} (\cos \omega t_1 - \cos \omega t_0)^2$
max when $\omega t_0 \approx 108^0 \rightarrow \omega t_1 \approx 342^0 \rightarrow \langle E_{kin} \rangle = 3.17U$
 $\rightarrow N_{max} \hbar \omega = E_{ion} + 3.17U_p$
Diffusion \longrightarrow ATI Plateau
 $t = t_1^+ \quad \dot{x}(t_1^+) = -\dot{x}(t_1) \text{ (best situation)}$
 $E_{drift} = \frac{eE_0^2}{2m\omega^2} (2\cos \omega t_1 - \cos \omega t_0)^2$
max when $\omega t_0 \approx 105^0 \rightarrow \omega t_1 \approx 351.7^0 \rightarrow E_{drift} = 10U$
PERIOD T/2 \longrightarrow 2 ω

FURTHER DEVELOMENTS

- Attosecond pulse generation (mode locking of HH)
- Coherent sources in the VUV and XUV
- Cluster explosion : neutron sources
 Highly energetic particles

CLUSTER EXPLOSION

