ADIABATIC PASSAGE TECHNIQUES IN SIMPLE QUANTUM SYSTEMS

Nikolay V. Vitanov

Department of Physics, Sofia University, Bulgaria

August 18, 2008 Corsica summer school

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

Outlook

Two basic approaches

- ▶ one or more level crossings
- delayed (but overlapped) pulses

Systems

- \blacktriangleright two states
- \blacktriangleright three states
- multiple states

TYPES OF EXCITATION

FIGURE: Incoherent excitation (black), Rabi oscillations (blue) and adiabatic passage (red).

COHERENT EXCITATION

 $i\hbar \frac{d}{dt} \mathbf{c}(t) = \mathbf{H}(t)\mathbf{c}(t)$ time-dependent Schrödinger equation $\mathbf{c}(t) = [c_1(t), c_2(t)]^T$ vector with the **probability amplitudes** of ψ_1 and ψ_2 $P_n(t) = |c_n(t)|^2 \ (n = 1, 2)$ populations $\mathbf{H}(t) = \hbar \begin{bmatrix} 0 & \frac{1}{2}\Omega(t) \\ \frac{1}{2}\Omega(t) & \Delta(t) \end{bmatrix}$ Hamiltonian in Rotating-Wave Approximation $\Omega(t)$ the **Rabi frequency**: $\Omega(t) = -\mathbf{d}_{12} \cdot \mathcal{E}(t)/\hbar$ for electric-dipole transitions, with \mathbf{d}_{12} the transition dipole moment and $\mathcal{E}(t)$ the electric field envelope $\Delta = \omega_0 - \omega_0$ atom-laser **detuning** between the transition frequency ω_0 and the laser frequency ω

ADIABATIC STATES

$$\mathbf{H}(t) = \hbar \left[\begin{array}{cc} 0 & \frac{1}{2} \Omega(t) \\ \frac{1}{2} \Omega(t) & \Delta(t) \end{array} \right] \mathrm{Hamiltonian}$$

adiabatic states: the instantaneous eigenstates of the Hamiltonian

$$\begin{split} \varphi_{+}(t) &= \psi_{1} \sin \vartheta(t) + \psi_{2} \cos \vartheta(t) & \mathbf{H}(t)\varphi_{+}(t) = \hbar \varepsilon_{+}(t)\varphi_{+}(t) \\ \varphi_{-}(t) &= \psi_{1} \cos \vartheta(t) - \psi_{2} \sin \vartheta(t) & \mathbf{H}(t)\varphi_{-}(t) = \hbar \varepsilon_{-}(t)\varphi_{-}(t) \\ \vartheta(t) &= \frac{1}{2} \arctan[\Omega(t)/\Delta(t)] & \text{mixing angle} \end{split}$$

adiabatic energies: the eigenvalues of $\mathbf{H}(t)$

$$\hbar \varepsilon_{\pm}(t) = \frac{1}{2} \hbar \left[\Delta(t) \pm \sqrt{\Delta^2(t) + \Omega^2(t)} \right]$$

adiabatic evolution: no transitions between the adiabatic states

EIGENENERGY SPLITTING

Eigenenergy splitting

$$\hbar \varepsilon_+(t) - \hbar \varepsilon_-(t) = \hbar \sqrt{\Delta^2(t) + \Omega^2(t)} \geqq \hbar \Delta(t)$$

The interaction pushes away the adiabatic energies from each other!

level crossing of diabatic energies \longrightarrow avoided crossing of adiabatic energies

$$\Delta(t_c) = 0 \Longrightarrow \hbar \varepsilon_+(t_c) - \hbar \varepsilon_-(t_c) = \hbar \Omega(t_c)$$

The splitting of the avoided crossing is equal to the Rabi frequency!

ADIABATIC EVOLUTION

FIGURE: Adiabatic passage. Left: No crossing. Right: Level crossing

If the statevector $\Psi(t)$ coincides with an adiabatic state $\varphi(t)$ at some time t, then it will remain in that adiabatic state as long as the evolution is adiabatic: the statevector $\Psi(t)$ will adiabatically *follow* the adiabatic state $\varphi(t)$.

ADIABATIC EVOLUTION: NO-CROSSING CASE

assumptions

- $\Delta(t) > 0$ (no crossing)
- Ω(t) > 0 (the transition probability does not depend on the overall signs)
 Ω(t) ^{t→±∞} 0 (pulsed field)

∜

$$\begin{array}{c} \infty \stackrel{-\infty \leftarrow t}{\longleftarrow} \Delta(t) / \Omega(t) \stackrel{t \to +\infty}{\longrightarrow} \infty \\ 0 \stackrel{-\infty \leftarrow t}{\longleftarrow} \vartheta(t) = \frac{1}{2} \arctan[\Omega(t) / \Delta(t)] \stackrel{t \to +\infty}{\longrightarrow} 0 \end{array}$$

Asymptotically, each adiabatic state tends to the same unperturbed state

$$\psi_2 \stackrel{-\infty \leftarrow t}{\longleftarrow} \quad \varphi_+(t) = \psi_1 \sin \vartheta(t) + \psi_2 \cos \vartheta(t) \quad \stackrel{t \to +\infty}{\longrightarrow} \psi_2$$
$$\psi_1 \stackrel{-\infty \leftarrow t}{\longleftarrow} \quad \varphi_-(t) = \psi_1 \cos \vartheta(t) - \psi_2 \sin \vartheta(t) \quad \stackrel{t \to +\infty}{\longrightarrow} \psi_1$$

 \implies starting from the ground state ψ_1 initially, the population makes a partial excursion into the excited state ψ_2 at intermediate times and eventually returns to ψ_1 in the end: **complete population return**

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

ADIABATIC EVOLUTION: LEVEL CROSSING

assumptions

- $\Delta(t_c) = 0$ (crossing at time t_c) and $\dot{\Delta}(t_c) > 0$
- Ω(t) > 0 (the transition probability does not depend on the overall signs)
 Ω(t) ^{t→±∞} 0 (pulsed field)

∜

$$\begin{array}{c} -\infty \stackrel{-\infty \leftarrow t}{\longleftarrow} \Delta(t) / \Omega(t) \stackrel{t \to +\infty}{\longrightarrow} \infty \\ \frac{1}{2}\pi \stackrel{-\infty \leftarrow t}{\longleftarrow} \vartheta(t) = \frac{1}{2} \arctan[\Omega(t) / \Delta(t)] \stackrel{t \to +\infty}{\longrightarrow} 0 \end{array}$$

Asymptotically, each adiabatic state tends to different unperturbed state

$$\psi_1 \stackrel{-\infty \leftarrow t}{\longleftarrow} \quad \varphi_+(t) = \psi_1 \sin \vartheta(t) + \psi_2 \cos \vartheta(t) \quad \stackrel{t \to +\infty}{\longrightarrow} \psi_2$$
$$-\psi_2 \stackrel{-\infty \leftarrow t}{\longleftarrow} \quad \varphi_-(t) = \psi_1 \cos \vartheta(t) - \psi_2 \sin \vartheta(t) \quad \stackrel{t \to +\infty}{\longrightarrow} \psi_1$$

 $\implies \text{the population passes gradually from state } \psi_1 \text{ to state } \psi_2$ complete population transfer (inversion)

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

ADIABATIC EVOLUTION

FIGURE: Adiabatic passage. Left: No crossing. Right: Level crossing

ADIABATIC BASIS

Diabatic (unperturbed) basis $\mathbf{c}(t) = [c_1(t), c_2(t)]^T$

$$i\hbar \frac{d}{dt} \mathbf{c}(t) = \mathbf{H}(t)\mathbf{c}(t) \qquad \mathbf{H}(t) = \hbar \begin{bmatrix} 0 & \frac{1}{2}\Omega(t) \\ \frac{1}{2}\Omega(t) & \Delta \end{bmatrix}$$

Time-dependent rotation

$$\mathbf{c}(t) = \mathbf{R}[\vartheta(t)]\mathbf{a}(t) \qquad \mathbf{R}(\vartheta) = \begin{bmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{bmatrix}$$

Adiabatic (dressed) basis $\mathbf{a}(t) = [a_{-}(t), a_{+}(t)]^{T}$

$$i\hbar \frac{d}{dt} \mathbf{a}(t) = \mathbf{H}_{a}(t)\mathbf{a}(t) \qquad \mathbf{H}_{a} = \hbar \begin{bmatrix} \lambda_{-} & -i\dot{\vartheta} \\ i\dot{\vartheta} & \lambda_{+} \end{bmatrix}$$
$$\mathbf{H}_{a} = \mathbf{R}(-\vartheta)\mathbf{H}\mathbf{R}(\vartheta) - i\hbar\mathbf{R}(-\vartheta)\frac{d}{dt}\mathbf{R}(\vartheta)$$

Nikolay V. Vitanov

Adiabatic passage techniques

ADIABATIC SOLUTION

Adiabatic basis $\mathbf{a}(t) = [a_{-}(t), a_{+}(t)]^{T}$

$$i\hbar \frac{d}{dt}\mathbf{a}(t) = \mathbf{H}_a(t)\mathbf{a}(t) \qquad \mathbf{H}_a = \hbar \begin{bmatrix} \lambda_- & -i\dot{\vartheta} \\ i\dot{\vartheta} & \lambda_+ \end{bmatrix}$$

In the adiabatic limit: $|\dot{\vartheta}(t)| \ll \lambda_+ - \lambda_-$, and $\dot{\vartheta}(t)$ can be neglected. The adiabatic solution in the adiabatic basis is

$$\mathbf{U}_a(t, -\infty) = \begin{bmatrix} e^{-i\Lambda_-(t)} & 0\\ 0 & e^{-i\Lambda_+(t)} \end{bmatrix} \qquad \Lambda_{\pm} = \int_{-\infty}^t \lambda_{\pm}(t') \mathrm{d}t'$$

The adiabatic amplitudes $\mathbf{a}(t) = \mathbf{U}_a(t, -\infty)\mathbf{a}(-\infty)$ The diabatic amplitudes

$$\begin{aligned} \mathbf{c}(t) &= \mathbf{R}[\vartheta(t)]\mathbf{a}(t) = \mathbf{R}[\vartheta(t)]\mathbf{U}_a(t, -\infty)\mathbf{a}(-\infty) \\ &= \mathbf{R}[\vartheta(t)]\mathbf{U}_a(t, -\infty)\mathbf{R}[-\vartheta(-\infty)]\mathbf{c}(-\infty) \\ \mathbf{R}(\vartheta) = \begin{bmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{bmatrix} \end{aligned}$$

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

ADIABATIC SOLUTION: EXCITATION PROBABILITY

$$\begin{split} P(t) &= \frac{1}{2} - \frac{\Delta(t)\Delta(t_i)}{2\lambda(t)\lambda(t_i)} - \frac{\Omega(t)\Omega(t_i)}{2\lambda(t)\lambda(t_i)} \cos \Lambda \\ \Lambda &= \int_{-\infty}^t \lambda(t') \mathrm{d}t' \qquad \lambda(t) = \sqrt{\Omega^2(t) + \Delta^2(t)} \end{split}$$

If
$$\Omega(t_i) = 0$$
 (pulsed field) then $P(t) = \frac{1}{2} - \frac{\Delta(t)\Delta(t_i)}{2\lambda(t)|\Delta(t_i)|}$

No-crossing case $(\Delta(t) > 0 \text{ for definiteness})$

$$P_2(t) = \frac{1}{2} - \frac{\Delta(t)}{2\sqrt{\Omega^2(t) + \Delta^2(t)}} \xrightarrow{t \to +\infty} 0$$

Level crossing $(\dot{\Delta}(t) > 0 \text{ for definiteness} \Longrightarrow \Delta(t_i) < 0)$

$$P_2(t) = \frac{1}{2} + \frac{\Delta(t)}{2\sqrt{\Omega^2(t) + \Delta^2(t)}} \xrightarrow{t \to +\infty} 1$$

Nikolay V. Vitanov

Adiabatic passage techniques

ADIABATIC CONDITION

$$i\hbar \frac{d}{dt} \mathbf{a}(t) = \mathbf{H}_a(t) \mathbf{a}(t) \qquad \mathbf{H}_a = \hbar \begin{bmatrix} \lambda_- & -i\dot{\vartheta} \\ i\dot{\vartheta} & \lambda_+ \end{bmatrix}$$

adiabatic evolution: no transitions between the adiabatic states \implies adiabatic condition $|\dot{\vartheta}(t)| \ll \lambda_{+}(t) - \lambda_{-}(t)$ (coupling \ll splitting)

$$\implies |\Delta \dot{\Omega}(t) - \dot{\Delta}(t)\Omega(t)| \ll [\Omega^2(t) + \Delta^2]^{3/2}$$

adiabaticity function $f(t) = \frac{\Delta \dot{\Omega}(t)}{[\Omega^2(t) + \Delta^2]^{3/2}}$

adiabatic evolution $\Longleftrightarrow |f(t)|_{\max} < \epsilon \ll 1$

The adiabatic condition for each specific pair of $[\Omega(t), \Delta(t)]$ is derived by analyzing the function f(t). Generally adiabatic evolution requires smooth time dependences, long interaction time and large Rabi frequency and/or large detuning.

ADIABATIC CONDITION: EXAMPLES

Rosen-Zener model

$$\Omega(t) = \Omega_0 \text{sech} \left(t/T \right) \qquad \Delta(t) = \text{const}$$
$$|\Delta| \gg \Delta_0 = \frac{1}{T}$$

the evolution is adiabatic for $|\Delta| \gtrsim \Delta_0$ and nonadiabatic for $|\Delta| \lesssim \Delta_0$ the adiabatic condition does *not* depend on the peak Rabi frequency Ω_0 ! Gaussian model

$$\Omega(t) = \Omega_0 \exp(-t^2/T^2) \qquad \Delta(t) = \text{const}$$
$$\Delta \gg \Delta_0 \approx \frac{1}{T} \sqrt{\frac{4}{27} \ln(\Omega_0 T \sqrt{2})}$$

the evolution is adiabatic for $|\Delta| \gtrsim \Delta_0$ and nonadiabatic for $|\Delta| \lesssim \Delta_0$ the adiabatic condition depends only logarithmically on Ω_0

Adiabatic condition: Examples

Allen-Eberly model

$$\begin{split} \Omega(t) &= \Omega_0 \mathrm{sech}\,(t/T) \qquad \Delta(t) = B \tanh(t/T) \quad \mathrm{chirp \ rate} \ B/T \\ \Omega_0^2 &\gg B/T \qquad (\Omega_0 < B) \\ BT \gg 1 \qquad (\Omega_0 > B) \end{split}$$

Gaussian model

$$\Omega(t) = \Omega_0 \exp(-t^2/T^2) \qquad \Delta(t) = Bt/T \quad \text{chirp rate } B/T$$
$$\Omega_0^2 \gg B/T \qquad (\Omega_0 \sqrt{2} \le B)$$
$$BT \gg 1 \qquad (\Omega_0 \sqrt{2} > B)$$

Landau-Zener model

$$\begin{split} \Omega(t) = \mathrm{const} \qquad \Delta(t) = Bt/T \\ \Omega_0^2 \gg B/T \end{split}$$

Nikolay V. Vitanov

Adiabatic passage techniques

EXACTLY SOLUBLE TWO-STATE MODELS

$\Omega(t) = \Omega_0(t \le T/2), \Delta(t) = \Delta_0$
$\Omega(t) = \Omega_0, \Delta(t) = Bt$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = \Delta_0$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = B \tanh t/T$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = B(1 + \tanh t/T)$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = \Delta_0 + B \tanh t/T$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = S \operatorname{sech} t/T + B \tanh t/T$
$\Omega(t) = \Omega_0 \operatorname{sech} t/T, \Delta(t) = \Delta_0 + S \operatorname{sech} t/T + B \tanh t/T$
$\Omega(t) = \Omega_0 \exp(- t /T), \Delta(t) = \Delta_0$
$\Omega(t) = \Omega_0 \exp(- t /T), \Delta(t) = \Delta_0 + B \exp(- t /T)$
$\Omega(t) = \Omega_0 \exp(- t /T), \Delta(t) = \Delta_0 + B \exp(-2 t /T)$

allow to study the full ranges of parameters, beyond the adiabatic regime

Nikolay V. Vitanov	
Adiabatic passage techniques	

ADIABATIC PASSAGE: NO CROSSING

FIGURE: Left — Rosen-Zener model: $\Omega(t) = \Omega_0 \operatorname{sech}(t/T), \ \Delta(t) = \operatorname{const.}$ Right — Gaussian model: $\Omega(t) = \Omega_0 \exp(-t^2/T^2), \ \Delta(t) = \operatorname{const.}$

Adiabatic passage: Level crossing

FIGURE: Left — Allen-Eberly model: $\Omega(t) = \Omega_0 \operatorname{sech}(t/T), \ \Delta(t) = B \tanh(t/T).$ Right — chirped Gaussian model: $\Omega(t) = \Omega_0 \exp(-t^2/T^2), \ \Delta(t) = Bt/T.$

ADIABATIC EVOLUTION: SUMMARY

- ▶ no transitions in the adiabatic basis (between the adiabatic states)
- ▶ for no-crossing energies in the original basis: complete population return
- ▶ for crossing energies in the original basis: complete population transfer
- population transfer robust agains variations of the interaction parameters (Rabi frequency, chirp rate, interaction duration): significant advantage over Rabi cycling
- ▶ adiabatic passage does not depend on the sign of the chirp: $\dot{\Delta}(t) > 0$ or $\dot{\Delta}(t) < 0$
- \blacktriangleright adiabatic passage does not depend on the sign of the Rabi frequency Ω
- adiabatic evolution requires smooth time dependences and large Rabi frequency and/or large detuning (the adiabatic condition may vary!)

Power broadening in steady excitation

FIGURE: Lineshapes in steady excitation: typical power broadening.

Steady-state excitation of a two-state atom driven by cw laser field

$$P \propto \frac{1}{\Delta^2 + \Gamma^2/4 + \Omega^2/4}$$

Nikolay V. Vitanov Adiabatic passage techniques

POWER *non*-broadening in pulsed excitation

FIGURE: Ionization signal (left) and fluorescence (right) in xenon for pump intensities 0.75 GW/cm^2 (a,d), 2.5 GW/cm^2 (b,e) and 7.5 GW/cm^2 (c,f).

T. Halfmann, T. Rickes, N.V.V. and K. Bergmann, Opt. Commun. 220, 353 (2003)

Nikolay V. Vitanov

POWER non-BROADENING IN PULSED EXCITATION

Line width measured during excitation

$$I = \int_{-\infty}^{+\infty} \Gamma(t) P_2(t) \mathrm{d}t$$

The signal increases with the Rabi frequency [because $P_2(t)$ increases with Ω] \implies typical power broadening.

Line width measured after excitation

Excitation probability in the adiabatic limit

$$P_2(t) = \frac{1}{2} - \frac{\Delta(t)}{2\sqrt{\Omega^2(t) + \Delta^2(t)}} \stackrel{t \to +\infty}{\longrightarrow} 0$$

No excitation outside the nonadiabatic region $|\Delta| \lesssim 1/T$ \implies no dependence on the Rabi frequency $\Omega_0!$ \implies no power broadening!

N.V.V., B.W.Shore, L.Yatsenko, K.Böhmer, T.Halfmann, T.Rickes, K.Bergmann, Opt. Commun. 199, 117 (2001)

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

LEVEL CROSSING: IMPLEMENTATIONS

Traditional techniques

- ▶ pulse shaping for femtosecond and picosecond pulses (chirp $\omega_L(t)$)
- ▶ AOM and EOM for microsecond pulses (chirp $\omega_L(t)$)
- electric fields (chirp $\omega_A(t)$)
- magnetic fields (chirp $\omega_A(t)$)

Other methods (suitable for nanosecond pulses)

- ▶ Stark-chirped rapid adiabatic passage (SCRAP) (laser-induced dynamic Stark shift in ω_A)
- retroreflection-induced bichromatic adiabatic passage (RIBAP) (crossing of Floquet energies)
- ▶ superadiabatic passage (SAP) (crossing in adiabatic basis)

SCRAP: STARK-CHIRPED RAPID ADIABATIC PASSAGE

Evolution of the laser pulses, the level energies and the populations for coincident and delayed pump and Stark pulses

- a strong far-off-resonant laser pulse Stark shifts the level energies
- a nearly-resonant pump laser pulse is applied with a suitable detuning
- the Stark pulse and the pump detuning create two level crossings
- the driving pulse is applied at one of the induced level crossings
- the laser parameters are chosen such that ensure diabatic evolution at one crossing and adiabatic at the other
- this adiabatic-diabatic scenario produces complete population transfer

SCRAP: EXPERIMENT

FIGURE: Experimental demonstration of SCRAP in helium

T.Rickes, L.P.Yatsenko, S.Steuerwald, T.Halfmann, B.W.Shore, N.V.V., K.Bergmann, J.Chem.Phys. 113, 534 (2000)
L.P.Yatsenko, A.Vardi, T.Halfmann, B.W.Shore, K.Bergmann, Phys. Rev. A 60, R4237 (1999)

THREE-STATE SCRAP: THEORY

A.A.Rangelov, N.V.V., L.P.Yatsenko, B.W.Shore, T.Halfmann, K.Bergmann, Phys. Rev. A 72, 053403 (2005)

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

THREE-STATE SCRAP: OPTIMIZATION

A.A.Rangelov, N.V.V., L.P.Yatsenko, B.W.Shore, T.Halfmann, K.Bergmann, Phys. Rev. A 72, 053403 (2005)

THREE-STATE SCRAP: ROBUSTNESS

A.A.Rangelov, N.V.V., L.P.Yatsenko, B.W.Shore, T.Halfmann, K.Bergmann, Phys. Rev. A 72, 053403 (2005)

THREE-STATE SCRAP: EXPERIMENT

M. Oberst, H. Muench, T. Halfmann, PRL 99, 173001 (2007)

THREE-STATE SCRAP: EXPERIMENT

M. Oberst, H. Muench, T. Halfmann, PRL 99, 173001 (2007)

RIBAP: Retroreflection-induced bichromatic adiabatic passage

Nikolay V. Vitanov Adiabatic passage techniques

RIBAP: Retroreflection-induced bichromatic adiabatic passage

S. Guérin, L.P. Yatsenko, H.R. Jauslin, Phys. Rev. A 63, 031403 (2001)

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

RIBAP. FLOOUET PICTURE

FIGURE: Two pairs of Floquet quasienergies for (a) $\alpha = 0$, (b) $\alpha = 0.5$, (c) $\alpha = 1$. Full curves: quasienergies for ψ_1 ; dashed curves: quasienergies for ψ_2 .

S. Guérin, L.P. Yatsenko, H.R. Jauslin, Phys. Rev. A 63, 031403 (2001)

L.P. Yatsenko, B.W. Shore, N.V.V., K. Bergmann, Phys. Rev. A 68, 043405 (2003)

Nikolay V	. Vitano	v
Adiabatic	passage	techniques

RIBAP: EXPERIMENT IN HELIUM

FIG. 4. Ion signal versus pump laser tuning for the atomic system, interacting with the strong pump laser pulse alone (a), the weak pump laser pulse alone (b), and simultaneously with both pump lasers pulses (c). Solid lines show numerical simulations.

A.P. Conde, L.P. Yatsenko, J. Klein, M. Oberst, T. Halfmann, Phys. Rev. A 72, 053808 (2005)

Level crossing Implementations Multiple crossings Basic STIRAP STIRAP: robustness Multi-STIRAP

Multiple Crossings

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia
Selectivity of adiabatic passage

Selectivity of adiabatic passage

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

SELECTIVITY OF ADIABATIC PASSAGE

Nikolay V. Vitanov Adiabatic passage techniques

SELECTIVITY OF ADIABATIC PASSAGE

FIGURE: Sodium experiment of Melinger et al (1992).

J.S. Melinger, S.R. Gandhi, A. Hariharan, J.X. Tull, and W.S. Warren, Phys. Rev. Lett. 68, 2000 (1992).

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

SELECTIVITY OF ADIABATIC PASSAGE

FIGURE: Sodium experiment of Melinger et al (1992).

J.S. Melinger, S.R. Gandhi, A. Hariharan, J.X. Tull, and W.S. Warren, Phys. Rev. Lett. 68, 2000 (1992).

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

LADDER CLIMBING

FIGURE: Three-state ladder climbing in rubidium.

LADDER CLIMBING

FIGURE: Three-state ladder climbing in rubidium: experiment.

- B. Broers, H. B. van Linden van den Heuvell, and L. D. Noordam, Phys. Rev. Lett. 69, 2062 (1992)
- B. Broers B, L. D. Noordam, and H. B. van Linden van den Heuvell, Phys. Rev. A 46, 2749 (1992)

LEVEL CROSSING: ANALYTIC TOOLS

- ▶ two crossing levels: Landau-Zener and Demkov-Kunike models
- ▶ three crossing levels: Carroll-Hioe model
- multiple crossings: Demkov-Osherov, Demkov-Ostrovsky, bowtie, degenerate Landau-Zener

THREE CROSSING LEVELS

$$\mathbf{H}(t) = \begin{bmatrix} \Delta_0 + At & \frac{1}{2}\Omega_{12}(t) & 0 \\ \frac{1}{2}\Omega_{12}(t) & 0 & \frac{1}{2}\Omega_{23}(t) \\ 0 & \frac{1}{2}\Omega_{23}(t) & \Delta_0 - At \end{bmatrix}$$

the propagator

$$\mathbf{U}(\infty, -\infty) = \mathbf{R}(\infty)\mathbf{U}^{A}(\infty, -\infty)\mathbf{R}^{T}(-\infty)$$

$$\mathbf{U}^{A}(\infty, -\infty) = \mathbf{M}(\infty, \tau)\mathbf{U}_{LZ}(\tau)\mathbf{M}(\tau, 0)\mathbf{U}_{LZ}(0)\mathbf{M}(0, -\tau)\mathbf{U}_{LZ}(-\tau)\mathbf{M}(-\tau, -\infty)$$

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

THREE CROSSING LEVELS: LZ APPROACH

The transition probability matrix

$$\mathbf{P} = \begin{bmatrix} pp_0 & qp_0 & q_0 \\ qp + pq_0q + 2qp\sqrt{q_0}\cos\gamma & p^2 + q^2q_0 - 2qp\sqrt{q_0}\cos\gamma & qp_0 \\ q^2 + q_0p^2 - 2qp\sqrt{q_0}\cos\gamma & qp + pq_0q + 2qp\sqrt{q_0}\cos\gamma & pp_0 \end{bmatrix}$$

$$\begin{split} p_{\kappa} &= e^{-\pi a_{\kappa}^{2}}, \quad q_{\kappa} = 1 - p_{\kappa} \quad (\kappa = +, -, 0) \\ a_{-} &= \Omega_{12}(-\tau)/(2A)^{1/2}, \quad a_{0} = \Omega_{\text{eff}}(0)/2A^{1/2}, \quad a_{+} = \Omega_{23}(\tau)/(2A)^{1/2} \\ \Omega_{\text{eff}}(0) &= \lambda_{2}(0) - \lambda_{3}(0) = -\frac{1}{2}\Delta_{0} + \frac{1}{2}\sqrt{\Delta_{0}^{2} + 2\Omega_{0}^{2}} \\ \phi_{\kappa} &= \arg\Gamma(1 - ia_{\kappa}^{2}) + \frac{\pi}{4} + a_{\kappa}^{2}(\ln a_{\kappa}^{2} - 1) \\ \gamma &= 2\phi - \phi_{0} + 2\varphi_{1} \end{split}$$

S.S. Ivanov and N.V.V., Phys. Rev. A 77, 023406 (2008)

Nikolay V. Vitanov

THREE CROSSING STATES: ASYMMETRY VS DETUNING

THREE CROSSING STATES: ASYMMETRY VS CHIRP

DEMKOV-OSHEROV MODEL

Nikolay V. Vitanov

Adiabatic passage techniques

Demkov-Osherov model

Amazingly: the exact result coincides with the naive classical multiplication of probabilities!

 $p_n = \exp\left(-\pi\Omega_n/2\beta\right)$ no-transition probability

 $q_n = 1 - p_n = 1 - \exp(-\pi\Omega_n/2\beta)$ transition probability

Demkov, Osherov. Sov. Phys. JETP 26, 916 (1968), Demkov, Ostrovsky. J. Phys. B 28, 403 (1995)

COUNTERINTUITIVE TRANSITIONS

The zero probability for counterintuitive transitions applies only to this model!

Nonzero probability if

- ▶ finite duration
- pulsed interaction
- nonlinear energies

A.A.Rangelov, J.Piilo, N.V.V., Phys. Rev. A 72, 053404(9) (2005)

Nikolay V. Vitanov

VIBRATIONAL AND ROTATIONAL LADDER CLIMBING

BOW-TIE AND "TRIANGULAR" MODELS

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

BOW-TIE AND "TRIANGLE" MODELS: APPLICATIONS

Bow-tie model

- molecules: vibrational ladder climbing
- entangled Dicke states of trapped ions
 - I.E. Linington and N.V.V., Phys. Rev. A 77, 010302(R) (2008)

"Triangle" model

molecules: rotational ladder climbing (optical centrifuge)

Karczmarek, Wright, Corkum, Ivanov, Phys. Rev. Lett. 82, 3420 (1999); Villeneuve, Aseyev, Dietrich, Spanner, Ivanov, Corkum, Phys. Rev. Lett. 85, 542 (2000); N.V.V. and B. Girard, Phys. Rev. A 69, 033409(13) (2004)

- molecules: vibrational ladder climbing (anharmonic) Chelkowski, Bandrauk, Corkum, Melinger, Warren, Phys. Rev. Lett. 65, 2355 (1990); J. Chem. Phys. 99, 4279 (1993); 95, 2210 (1991); 101, 6439 (1994); Phys. Rev. A 52, R3417 (1995); J. Raman Spectrosc. 28, 459 (1997); J. Chem. Phys. 110, 4229 (1999)
- entangled Dicke states of coupled spins

R.G. Unanyan, N.V.V., K. Bergmann, Phys. Rev. Lett. 87, 137902 (2001); Phys. Rev. A 66, 042101 (2002)

OPTICAL CENTRIFUGE FOR MOLECULES

Nikolay V. Vitanov Adiabatic passage techniques

SUPERROTORS

Level crossing Implementations Multiple crossings Basic STIRAP STIRAP: robustness Multi-STIRAP

Stimulated Raman Adiabatic Passage STIRAP

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

STIRAP

Stimulated Raman Adiabatic Passage

- ▶ Basic three-state STIRAP
- Multistate STIRAP
- Fractional STIRAP
- ▶ STIRAP via continuum

N.V.V., M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55-190 (2001) Coherent manipulation of atoms and molecules by sequential pulses

N.V.V., T. Halfmann, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763-809 (2001) Laser-induced population transfer by adiabatic passage techniques Level crossing Implementations Multiple crossings Basic STIRAP STIRAP: robustness Multi-STIRAP

Three-state chains $\psi_1 \leftrightarrow \psi_2 \leftrightarrow \psi_3$

ladder: $\hbar \Delta_2 = E_2 - E_1 - \hbar \omega_1$ lambda: $\hbar \Delta_2 = E_2 - E_1 - \hbar \omega_1$

 $\hbar\Delta_3 = E_3 - E_1 - \hbar\omega_1 - \hbar\omega_2$ $\hbar\Delta_3 = E_3 - E_1 - \hbar\omega_1 + \hbar\omega_2$

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

THREE-STATE SYSTEM: STIRAP

population transfer $\psi_1 \longrightarrow \psi_3$

- ▶ sequential π pulses (pump-Stokes): $\psi_1 \xrightarrow{\pi} \psi_2 \xrightarrow{\pi} \psi_3$
- ▶ simultaneous pump and Stokes (generalized π pulse): $\psi_1 \longrightarrow \psi_2 \longrightarrow \psi_3$
- ▶ SEP: stimulated-emission pumping (pump-Stokes): $\psi_1 \xrightarrow{50\%} \psi_2 \xrightarrow{50\%} \psi_3$
- ▶ STIRAP: stimulated Raman adiabatic passage (Stokes-pump): $\psi_1 \xrightarrow{100\%} \psi_3$

STIRAP requires

- two-photon resonance between ψ_1 and ψ_3
- ▶ counterintuitive pulse order Stokes-pump (sufficient overlap)
- ▶ adiabatic evolution (large pulse areas)

STIRAP delivers

- \blacktriangleright complete population transfer from ψ_1 to ψ_3
- ▶ no transient population in ψ_2

STIRAP: THEORY

The Schrödinger equation:
$$i \frac{d}{dt} \mathbf{c}(t) = \mathbf{H}(t)\mathbf{c}(t)$$
 $\mathbf{c}(t) = [c_1(t), c_2(t), c_3(t)]^T$

initially:
$$\Psi(-\infty) \equiv \psi_1 \quad \mathbf{c}(-\infty) = [1, 0, 0]^T$$

objective: $\Psi(+\infty) \equiv \psi_3 \quad \mathbf{c}(+\infty) = [0, 0, 1]^T$

$$\begin{array}{l} \text{RWA Hamiltonian for coherent excitation} \\ \mathbf{H}(t) = \hbar \begin{bmatrix} 0 & \frac{1}{2}\Omega_p(t) & 0 \\ \frac{1}{2}\Omega_p(t)^* & \Delta_p & \frac{1}{2}\Omega_s(t) \\ 0 & \frac{1}{2}\Omega_s(t)^* & \Delta_p - \Delta_s \end{bmatrix} \\ \begin{array}{l} \text{detunings} \\ \hbar \Delta_p = E_2 - E_1 - \hbar \omega_p \\ \hbar \Delta_s = E_2 - E_3 - \hbar \omega_s \end{array}$$

Essential condition for STIRAP: two-photon resonance between ψ_1 and ψ_3 $\Delta_p = \Delta_s \equiv \Delta$

$$\mathbf{H}(t) = \hbar \begin{bmatrix} 0 & \frac{1}{2}\Omega_p(t) & 0\\ \frac{1}{2}\Omega_p(t) & \Delta & \frac{1}{2}\Omega_s(t)\\ 0 & \frac{1}{2}\Omega_s(t) & 0 \end{bmatrix}$$

Nikolay V. Vitanov

Adiabatic passage techniques

ADIABATIC BASIS

adiabatic states: instantaneous eigenstates of $\mathbf{H}(t)$

$$\begin{aligned} \chi_{+}(t) &= \psi_{1} \sin \vartheta(t) \sin \varphi(t) + \psi_{2} \cos \varphi(t) + \psi_{3} \cos \vartheta(t) \sin \varphi(t) \\ \chi_{0}(t) &= \psi_{1} \cos \vartheta(t) - \psi_{3} \sin \vartheta(t) \text{ no component from } \psi_{2}!!! \\ \chi_{-}(t) &= \psi_{1} \sin \vartheta(t) \cos \varphi(t) - \psi_{2} \sin \varphi(t) + \psi_{3} \cos \vartheta(t) \cos \varphi(t) \end{aligned}$$

adiabatic energies: the eigenvalues of $\mathbf{H}(t)$ $\hbar \varepsilon_{-}, \hbar \varepsilon_{0}, \hbar \varepsilon_{0}$

$$\begin{split} \varepsilon_{+}(t) &= \frac{1}{2}\Delta + \frac{1}{2}\sqrt{\Delta^{2} + \Omega^{2}(t)} = \frac{1}{2}\Omega(t)\cot\varphi(t) \\ \varepsilon_{0}(t) &= 0 \\ \varepsilon_{-}(t) &= \frac{1}{2}\Delta - \frac{1}{2}\sqrt{\Delta^{2} + \Omega^{2}(t)} = -\frac{1}{2}\Omega(t)\tan\varphi(t) \\ \tan\vartheta(t) &= \frac{\Omega_{p}(t)}{\Omega_{s}(t)} \qquad \tan 2\varphi(t) = \frac{\Omega(t)}{\Delta} \qquad \Omega(t) = \sqrt{\Omega_{p}^{2}(t) + \Omega_{s}^{2}(t)} \end{split}$$

Nikolay V. Vitanov

Adiabatic passage techniques

STIRAP: MECHANISM

$$0 \stackrel{-\infty \leftarrow t}{\longleftarrow} \frac{\Omega_p(t)}{\Omega_s(t)} \stackrel{t \to +\infty}{\longrightarrow} \infty \implies 0 \stackrel{-\infty \leftarrow t}{\longleftarrow} \vartheta(t) \stackrel{t \to +\infty}{\longrightarrow} \frac{1}{2}\pi$$

counterintuitive $(S - P) \implies \psi_1 \stackrel{-\infty \leftarrow t}{\longleftarrow} \chi_0(t) \stackrel{t \to +\infty}{\longrightarrow} -\psi_3$

- \blacktriangleright two-photon resonance $\Longrightarrow \mathbf{H}(t)$ possesses a dark state
- counterintuitive pulse sequence $\implies \Psi(-\infty) \equiv \chi_0(-\infty)$
- adiabatic evolution \implies the system stays in $\chi_0(t)$: $\Psi(t) = \chi_0(t) \stackrel{t \to +\infty}{\longrightarrow} -\psi_3$

STIRAP: MECHANISM

Nikolay V. Vitanov

Adiabatic passage techniques

STIRAP: DARK STATE

dark (trapping, trapped) state $\chi_0(t) = \psi_1 \cos \vartheta(t) - \psi_3 \sin \vartheta(t)$

no component from $\psi_2 \Longrightarrow$ the (lossy) state ψ_2 remains unpopulated in the adiabatic regime if the system stays in $\chi_0(t)$: $\Psi(t) = \chi_0(t)$! \Longrightarrow the properties of ψ_2 (detuning Δ , loss Γ) do not affect STIRAP!

Bergmann group: STIRAP with 100% efficiency even for $T \sim 100/\Gamma!$

STIRAP SIGNATURE

FIGURE: STIRAP signature in Ne^{*}: Increase of signal from 3 and decrease of signal from 2.

INTUITIVE VS COUNTERINTUITIVE PULSE SEQUENCE

RESONANCE $(\Delta = 0)$

- ▶ counterintuitive sequence: complete population transfer to ψ_3
- ▶ intuitive pulse sequence: generalized Rabi oscillations

$$\begin{split} \Delta &= 0 \Longrightarrow \varphi \equiv \pi/4 \qquad \text{for intuitive ordering: } \vartheta(-\infty) = \pi/2, \ \vartheta(+\infty) = 0 \\ & \frac{1}{\sqrt{2}}(\psi_1 + \psi_2) \xleftarrow{-\infty} \chi_+(t) \quad \stackrel{+\infty}{\longrightarrow} \frac{1}{\sqrt{2}}(\psi_2 + \psi_3), \\ & -\psi_3 \xleftarrow{-\infty} \chi_0(t) \quad \stackrel{+\infty}{\longrightarrow} \psi_1, \\ & \frac{1}{\sqrt{2}}(\psi_1 - \psi_2) \xleftarrow{-\infty} \chi_-(t) \quad \stackrel{+\infty}{\longrightarrow} \frac{1}{\sqrt{2}}(-\psi_2 + \psi_3). \end{split}$$

 \implies initially both states $\chi_+(t)$ and $\chi_-(t)$ are populated interference between two different paths from ψ_1 to $\psi_3 \implies$ oscillations

$$P_1 = 0, \quad P_2 = \sin^2 \frac{1}{2}A, \quad P_3 = \cos^2 \frac{1}{2}A \qquad A = \int_{-\infty}^{+\infty} \Omega(t) dt$$

N.V.V. & S. Stenholm, Phys. Rev. A 55, 648 (1997)

Nikolay V. Vitanov

Adiabatic passage techniques

University of Sofia

INTUITIVE VS COUNTERINTUITIVE PULSE SEQUENCE

OFF RESONANCE $(\Delta \neq 0)$

- ▶ counterintuitive sequence: complete population transfer to ψ_3
- ▶ intuitive pulse sequence: complete population transfer to ψ_3

for the intuitive ordering: $\vartheta(-\infty) = \pi/2, \ \vartheta(+\infty) = 0, \ \varphi(-\infty) = \varphi(+\infty) = 0$

$$\psi_1 \xleftarrow{-\infty} \chi_-(t) \xrightarrow{+\infty} \psi_3$$

however the intermediate state receives a significant transient population: $P_2 = \sin^2 \varphi(t)$

If the lifetime of ψ_2 is short compared to the excitation duration, then population transfer can be achieved only with the counterintuitive sequence. If the lifetime of ψ_2 is sufficiently long then complete population transfer can be achieved with either pulse orderings.

N.V.V. & S. Stenholm, Phys. Rev. A 55, 648 (1997)

INTUITIVE VS COUNTERINTUITIVE PULSE SEQUENCE

FAR OFF RESONANCE $(|\Delta| \gg \Omega_{p,s}(t))$

- ▶ counterintuitive sequence: complete population transfer to ψ_3
- intuitive pulse sequence: complete population transfer to ψ_3

 $|\Delta| \gg \Omega_{p,s}(t) \Longrightarrow$ the intermediate state ψ_2 can be eliminated adiabatically \Longrightarrow effective two-state model

$$\Omega_{\text{eff}}(t) = -\frac{\Omega_p(t)\Omega_s(t)}{2\Delta} \qquad \Delta_{\text{eff}}(t) = \frac{\Omega_p^2(t) - \Omega_s^2(t)}{2\Delta}$$

delayed pulses: the detuning $\Delta_{\text{eff}}(t)$ crosses resonance when $\Omega_p(t_0) = \Omega_s(t_0)$ \implies complete population transfer for both pulse orderings in the adiabatic limit (the ordering reversal leads to the unimportant change of sign in $\Delta_{\text{eff}}(t)$)

B.W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, J.H. Eberly, Phys. Rev. A 45, 5297 (1992)

N.V.V. & S. Stenholm, Phys. Rev. A 55, 648 (1997)

FIGURE: Populations of the initial state (thin solid line), the intermediate state (dashed line), and the final state (thick solid line) against the pulse delay for Gaussian pulse shapes: $\Omega_p(t) = \Omega_0 e^{-(t-\tau)^2/T^2}$, $\Omega_s(t) = \Omega_0 e^{-(t+\tau)^2/T^2}$, with $\Omega_0 T = 40$.

STIRAP: EXPERIMENT IN NE*

FIGURE: STIRAP experiment in Ne^{*}: efficiency vs delay.

K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

STIRAP: EXPERIMENT IN NO

FIGURE: STIRAP experiment with pulsed lasers in NO: efficiency vs delay.

S. Schiemann, A. Kuhn, S. Steuerwald, K. Bergmann, Phys. Rev. Lett. 71, 3637 (1993)

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	
STIRAP: EXPERIMENT IN SO_2

FIGURE: STIRAP experiment with pulsed lasers in SO_2 : efficiency vs delay.

T. Halfmann and K. Bergmann, J. Chem. Phys. 104, 7068 (1996)

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

STIRAP: ADIABATIC BASIS & CONDITIONS

amplitudes of the adiabatic states $\mathbf{b}(t) = [b_{+}(t), b_{0}(t), b_{-}(t)]^{T}$ orthogonal transformation $\mathbf{c}(t) = \mathbf{R}(t)\mathbf{b}(t)$ rotation matrix $\mathbf{R}(t) = \begin{bmatrix} \sin\vartheta\sin\varphi & \cos\vartheta & \sin\vartheta\cos\varphi \\ \cos\varphi & 0 & -\sin\varphi \\ \cos\vartheta\sin\varphi & -\sin\vartheta & \cos\vartheta\cos\varphi \end{bmatrix}$ Schrödinger equation in the adiabatic basis $i\hbar \frac{d}{dt} \mathbf{b}(t) = \mathbf{H}_b(t)\mathbf{b}(t)$ Hamiltonian $\mathbf{H}_{b} = \mathbf{R}^{-1}\mathbf{H}\mathbf{R} - \mathbf{R}^{-1}\dot{\mathbf{R}} = \hbar \begin{bmatrix} \frac{1}{2}\Omega\cot\varphi & i\dot{\vartheta}\sin\varphi & i\dot{\varphi} \\ -i\dot{\vartheta}\sin\varphi & 0 & -i\dot{\vartheta}\cos\varphi \\ -i\dot{\varphi} & i\dot{\vartheta}\cos\varphi & -\frac{1}{2}\Omega\tan\varphi \end{bmatrix}$ adiabatic conditions $|\frac{1}{2}\Omega \cot \varphi| \gg |\dot{\vartheta}\sin \varphi|$ $\frac{|\frac{1}{2}\Omega\cot\varphi| \gg |\vartheta\sin\varphi|}{|\frac{1}{2}\Omega\tan\varphi| \gg |\dot{\vartheta}\cos\varphi| \qquad stronger!$

Adiabatic passage techniques

ADIABATIC CONDITIONS: LOCAL AND GLOBAL

adiabatic evolution \Leftarrow negligible coupling between each pair of adiabatic states compared to their energy difference

with respect to the dark state $\chi_0(t)$: $|\langle \dot{\chi}_0 | \chi_{\pm} \rangle| \ll |\varepsilon_0 - \varepsilon_{\pm}|$

$$\left| \dot{\vartheta} \frac{\sin^2 \varphi}{\cos \varphi} \right| \ll \frac{1}{2} \Omega, \qquad \left| \dot{\vartheta} \frac{\cos^2 \varphi}{\sin \varphi} \right| \ll \frac{1}{2} \Omega \quad (stronger)$$

On one-photon resonance ($\Delta = 0$): $\varphi = \pi/4$ and hence (T is the pulse width)

local:
$$\Omega(t) \gg |\dot{\vartheta}(t)| \propto T^{-1}$$
 $\Omega(t) = \sqrt{\Omega_p^2(t) + \Omega_s^2(t)}$

Integration over t:

global :
$$A \propto \Omega_0 T \gg 1$$

 \implies adiabaticity demands a large pulse area A

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

ADIABATIC CONDITIONS: PULSED LASERS

cw lasers have almost perfect coherence properties pulsed lasers: the adiabatic conditions need to be modified perfectly coherent pulsed lasers: the adiabatic condition is written as energy $\propto \Omega_0^2 T > 100/T \Longrightarrow$ lower limit on pulse energy

 \implies the needed laser energy grows rapidly when the pulse duration decreases phase fluctuations \implies the actual bandwidth $\Delta \omega$ exceeds $\omega_{TL} = 1/T$ modified adiabaticity condition

$$\Omega_0 T \gg \sqrt{1 + (\Delta \omega / \Delta \omega_{\rm TL})^2}$$

 $\begin{array}{l} {\rm phase \ fluctuations} \Longrightarrow {\rm time-dependent \ changes \ in \ the \ laser \ frequencies} \\ \Longrightarrow {\rm two-photon \ detuning} \Longrightarrow {\rm reduced \ efficiency} \end{array}$

A. Kuhn, G. Coulston, G.Z. He, S. Schiemann, K. Bergmann, W.S. Warren, J. Chem. Phys. 96, 4215 (1992) Nikolay V. Vitanov University of Sofia

TRANSITION TIME IN STIRAP

Define: T_{STIRAP} is the time during which $P_3(t)$ rises from ϵ to $1 - \epsilon$ ($\epsilon \ll 1$) For Gaussian pulses $\Omega_p(t) = \Omega_{p0} e^{-(t-\tau/2)^2/T^2}$ and $\Omega_s(t) = \Omega_{s0} e^{-(t+\tau/2)^2/T^2}$:

$$P_{3}(t) = \sin^{2} \vartheta(t) = \frac{1}{1 + (\Omega_{s0}/\Omega_{p0})^{2} e^{-4\tau t/T^{2}}}$$
$$\implies T_{STIRAP} = t_{1-\epsilon} - t_{\epsilon} = \frac{T^{2}}{2\tau} \ln\left(\frac{1-\epsilon}{\epsilon}\right)$$
$$T_{STIRAP} = t_{0.9} - t_{0.1} = \frac{T^{2}}{\tau} \ln 3, \quad T_{STIRAP} = t_{0.99} - t_{0.01} \approx \frac{T^{2}}{\tau} \ln 10$$

naive expectation: $T_{STIRAP} \propto T_{\text{interaction}} \propto \tau + 2T$ difference between interaction time and transition time!

 $T_{STIRAP} \propto 1/\tau \Longrightarrow$ the population transfer proceeds faster for larger delay!

P.A. Ivanov, N.V.V., K. Bergmann, Phys. Rev. A 70, 063409 (2004)

Sensitivity/Robustness of STIRAP to parameter fluctuations

N.V.V., M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55-190 (2001)

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia

SENSITIVITY TO SINGLE-PHOTON DETUNING

The single-photon detuning Δ does not affect the dark state $\chi_0(t) = \psi_1 \cos \vartheta(t) - \psi_3 \sin \vartheta(t)$ because $\vartheta(t) = \arctan[\Omega_p(t)/\Omega_s(t)]$

However, Δ affects the adiabatic conditions:

$$\left| \dot{\vartheta} \frac{\sin^2 \varphi}{\cos \varphi} \right| \ll \frac{1}{2} \Omega; \qquad \left| \dot{\vartheta} \frac{\cos^2 \varphi}{\sin \varphi} \right| \ll \frac{1}{2} \Omega \quad (\text{stronger because } |\varphi(t)| \le \pi/4)$$

$$\tan 2\varphi(t) = \Omega(t)/\Delta \qquad \Omega(t) = \sqrt{\Omega_p^2(t) + \Omega_s^2(t)}$$

 φ is a decreasing function of $\Delta \Longrightarrow$ the LHS increases with $\Delta \Longrightarrow$ adiabaticity deteriorates \Longrightarrow transfer efficiency decreases

scaling properties of the FWHM $\Delta_{1/2}$ of the single-photon line profile $P_3(\Delta)$

$$\Delta_{1/2} = D(\tau)\Omega_0^2 \propto \text{peak laser intensity}$$

Nikolay V. Vitanov

Adiabatic passage techniques

SENSITIVITY TO DETUNINGS: THEORY

FIGURE: Transfer efficiency vs the single-photon and two-photon detunings for Gaussian pulses, $\Omega_p = \Omega_0 e^{-(t-\tau/2)^2/T^2}$, $\Omega_s = \Omega_0 e^{-(t+\tau/2)^2/T^2}$, with $\Omega_0 T = 20$, $\tau = 1T$.

SENSITIVITY TO DETUNINGS: EXPERIMENT

FIGURE: Experimentally measured transfer efficiency of STIRAP in neon.

J. Martin, B.W. Shore, K. Bergmann, Phys. Rev. A 54, 1556 (1996)

SENSITIVITY TO TWO-PHOTON DETUNING

STIRAP is much more sensitive to the two-photon detuning $\delta = \Delta_p - \Delta_s$ because it prevents the exclusive population of the dark state.

Two approaches:

- ▶ analysis of transitions between the adiabatic states
- ▶ analysis of adiabatic conditions

SENSITIVITY TO TWO-PHOTON DETUNING

- the dark state $\chi_0(t)$ is no longer an eigenstate of $\mathbf{H}(t)$
- ▶ for nonzero δ each of the three eigenstates of $\mathbf{H}(t)$ connects to the same bare state at both $t = -\infty$ and $t = +\infty$
- ▶ no adiabatic connection from state ψ_1 to state ψ_3
- ▶ adiabatic evolution leads to complete population return to ψ_1
- ▶ the only mechanism, by which population transfer to state ψ_3 can occur, is by nonadiabatic transitions between the adiabatic states
- ▶ such transitions can take place for small values of δ when there are narrow avoided crossings between the adiabatic eigenvalues

Adiabatic passage techniques

SENSITIVITY TO TWO-PHOTON DETUNING

Alternative approach: uses the adiabatic condition in the basis of the eigenstates of $\mathbf{H}(t)$ for $\delta = 0$ In this basis the effect of nonzero two-photon detuning δ shows up in additional terms proportional to δ

$$\mathbf{H}_{b}(\delta) = \mathbf{H}_{b}(\delta = 0) + \frac{1}{2}\hbar\delta\cos^{2}\vartheta \begin{bmatrix} 1 & -\sqrt{2}\tan\vartheta & 1\\ -\sqrt{2}\tan\vartheta & 2\tan^{2}\vartheta & -\sqrt{2}\tan\vartheta\\ 1 & -\sqrt{2}\tan\vartheta & 1 \end{bmatrix},$$

The effect of δ shows up as additional nonadiabatic couplings (which do not vanish in the adiabatic limit!) between the $\delta = 0$ adiabatic states.

Modified adiabatic condition: $\delta \sin \vartheta \cos \vartheta \ll \frac{1}{\sqrt{2}} \Omega$

The two-photon line profile $P_3(\delta)$ must scale as

$$\delta_{1/2} = d(\tau)\Omega_0 \propto \sqrt{\text{laser intensity}}$$

SENSITIVITY OF STIRAP TO DECOHERENCE

irreversible population losses outside the system

$$\Gamma_{1/2} \approx G(\tau/T)(\Omega_0 T)^2, \qquad G(\tau/T) \approx \frac{3(\tau/T)\ln 2}{8(\tau/T)^2 + \pi/2} e^{-2(\tau/T)^2}$$

Fleischhauer & Manka, Phys. Rev. A 54, 794 (1996); N.V.V. & Stenholm, Phys. Rev. A 56, 1463 (1997)
dephasing (Liouville equation)

$$P_3 = \frac{1}{3} + \frac{2}{3} \exp(-3\gamma_{13}T^2/4\tau)$$
 $T_{STIRAP} \propto T^2/4\tau!$

P.A. Ivanov, N.V.V., K. Bergmann, Phys. Rev. A 70, 063409 (2004)

spontaneous emission within the system (Liouville equation) main loss mechanism: overdamping!

P.A. Ivanov, N.V.V., K. Bergmann, Phys. Rev. A 72, 053412 (2005)

FRACTIONAL STIRAP

Idea: As in STIRAP, the Stokes pulse arrives before the pump pulse, but unlike STIRAP, here the two pulses vanish simultaneously, while maintaining a constant finite ratio of amplitudes:

$$\lim_{t \to -\infty} \frac{\Omega_P(t)}{\Omega_S(t)} = 0 \qquad \lim_{t \to +\infty} \frac{\Omega_P(t)}{\Omega_S(t)} = \tan \alpha$$
$$\chi_0(t) = \frac{\Omega_S(t)}{\Omega(t)} e^{-i\phi_S} \psi_1 - \frac{\Omega_P(t)}{\Omega(t)} e^{i\phi_P} \psi_3 \qquad (\Omega(t) = \sqrt{\Omega_P^2(t) + \Omega_S^2(t)})$$
$$\implies \qquad e^{-i\phi_S} \psi_1 \xrightarrow{-\infty \leftarrow t} \chi_0(t) \xrightarrow{t + \infty} e^{-i\phi_S} \left[\psi_1 \cos \alpha - \psi_3 e^{i\phi} \sin \alpha \right] \qquad (\phi = \phi_P + \phi_S)$$

A coherent superposition of states ψ_1 and ψ_3 is created:

$$\Psi(+\infty) = \psi_1 \cos \alpha - \psi_3 e^{i\phi} \sin \alpha$$
$$\alpha = \pi/4 \Longrightarrow \Psi(+\infty) = \frac{1}{\sqrt{2}} (\psi_1 - \psi_3)$$

Hadamard gate in quantum information; beam splitter in atom optics

P. Marte, P. Zoller, and J.L. Hall, Phys. Rev. A 44, R4118 (1991); M. Weitz, B.C. Young, S. Chu, Phys. Rev. Lett. 73, 2563 (1994); N.V.V., K.-A. Suominen, and B.W. Shore, J. Phys. B 32, 4535 (1999)

FRACTIONAL STIRAP

If σ_+ and σ_- propagate in opposite directions \implies momentum transfer $2\hbar k$

- ▶ full STIRAP: atomic mirror
- ▶ half-STIRAP: atomic beam splitter

M. Weitz, B.C. Young, S. Chu, Phys. Rev. Lett. 73, 2563 (1994)

FRACTIONAL STIRAP

Rabi Frequencies (units of Ω_0) 1.0 $\Omega_{\rm P}$ Ω. 0.8 0.6 0.4 0.2 1.0 0.8 Populations 0.6 0.4 0.2 -2 0 2 -4 Time (units of T)

$$\begin{split} \Omega_P(t) &= \Omega_0 \sin \alpha \ \mathrm{e}^{-(t-\tau)^2/T^2} \\ \Omega_S(t) &= \Omega_0 \mathrm{e}^{-(t+\tau)^2/T^2} + \Omega_0 \cos \alpha \ \mathrm{e}^{-(t-\tau)^2/T^2} \\ \mathrm{can} \ \mathrm{be} \ \mathrm{achieved} \ \mathrm{by} \ \mathrm{using} \ \mathrm{only} \ \mathrm{two} \ \mathrm{pulses:} \\ \mathrm{one} \ \mathrm{with} \ \sigma^- \ \mathrm{polarization} \\ \mathrm{and} \ \mathrm{Rabi} \ \mathrm{frequency} \ \Omega_0 \mathrm{e}^{-(t+\tau)^2/T^2}, \\ \mathrm{and} \ \mathrm{another} \ \mathrm{with} \ \mathrm{Rabi} \ \mathrm{freq} \ \Omega_0 \mathrm{e}^{-(t-\tau)^2/T^2} \\ \mathrm{and} \ \mathrm{elliptic} \ \mathrm{polarization}, \\ \mathrm{with} \ \mathrm{angle} \ \mathrm{of} \ \mathrm{rotation} \ \mathrm{of} \ \mathrm{the} \ \mathrm{ellipse} \ \phi/2 \\ \mathrm{and} \ \mathrm{axial} \ \mathrm{ratio} \ |1-\tan \alpha|/(1+\tan \alpha) \end{split}$$

beam splitter: $\sigma_+ \to \pi$

This technique can be extended to multistate systems (higher J)

N.V.V., K.-A. Suominen, and B.W. Shore, J. Phys. B 32, 4535 (1999)

Nikolay V. Vitanov	
Adiabatic passage techniques	

STIRAP IN MULTISTATE CHAINS

such chains behave differently when they involve odd or even number of states

Nikolay V. Vitanov	University of Sofia
Adiabatic passage techniques	

STIRAP IN MULTISTATE CHAINS: RESONANCE

Odd number of states (N = 2n + 1): STIRAP possible!

$$\mathbf{H} = \frac{\hbar}{2} \begin{vmatrix} 0 & \Omega_{1,2} & 0 & 0 & 0 \\ \Omega_{1,2} & 2\Delta & \Omega_{2,3} & 0 & 0 \\ 0 & \Omega_{2,3} & 0 & \Omega_{3,4} & 0 \\ 0 & 0 & \Omega_{3,4} & 2\Delta & \Omega_{4,5} \\ 0 & 0 & 0 & \Omega_{4,5} & 0 \end{vmatrix}$$
 Hamiltonian for $N = 5$

a zero eigenvalue \Longrightarrow multistate dark state

$$\chi_0(t) = \frac{1}{\mathcal{N}(t)} [\Omega_{2,3}(t)\Omega_{4,5}(t)\psi_1 - \Omega_{1,2}(t)\Omega_{4,5}(t)\psi_3 + \Omega_{1,2}(t)\Omega_{3,4}(t)\psi_5]$$

adiabatic connection between ψ_1 and ψ_N : $\psi_1 \stackrel{-\infty \leftarrow t}{\leftarrow} \chi_0(t) \stackrel{t+\infty}{\longrightarrow} \psi_N \chi_0(t)$ survives also when (only) the even states in the chain are detuned

P. Marte, P. Zoller, and J.L. Hall, Phys. Rev. A 44, R4118 (1991)
 B.W. Shore, K. Bergmann, J. Oreg, S. Rosenwaks, Phys. Rev. A 44, 7442 (1991)

STIRAP IN MULTISTATE CHAINS: ATOMIC MIRROR

K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

Nikolay V. Vitanov	
Adiabatic passage techniques	

STIRAP IN MULTISTATE CHAINS: ATOMIC MIRROR

 $8\hbar k$ momentum transfer in double-STIRAP: $|m = -2\rangle \leftrightarrows |m = +2\rangle$ transient population of $|m = 0\rangle$ not a problem

K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

STIRAP IN MULTISTATE CHAINS: RESONANCE

Even number of states: STIRAP impossible! all intermediate-state detunings vanish: $\Delta_2 = \Delta_3 = \cdots = \Delta_{N-1} = 0$ \implies the Hamiltonian does not have a zero eigenvalue \implies no dark state More importantly: $\mathbf{H}(t)$ does not possess even a more general adiabatic-transfer (AT) state that provides an adiabatic connection $\psi_1 \rightarrow \psi_N$:

$$\psi_1 \stackrel{-\infty \leftarrow t}{\longleftarrow} \chi_T(t) \stackrel{t+\infty}{\longrightarrow} \psi_N$$

 $\chi_T(t)$ (AT state) may have nonzero contributions from all states $\chi_0(t)$ (the dark state) is an AT state with contributions only from ground states

Example: resonantly driven $(\Omega_p, \Omega_i, \Omega_s)$ four-state chain \rightarrow oscillations $P_1(\infty) \approx \cos^2 \vartheta \cos^2 \varphi$ $\tan \vartheta = \lim_{t \to +\infty} [\Omega_p(t)/\Omega_i(t)]$ $P_2(\infty) \approx 0$ $\varphi = \int_{-\infty}^{\infty} \sqrt{\frac{1}{2} \left(\Omega^2 - \sqrt{\Omega^4 - 4\Omega_p^2 \Omega_s^2}\right)} dt$ $P_4(\infty) \approx \sin^2 \varphi$ $\Omega^2 = \Omega_p^2 + \Omega_i^2 + \Omega_s^2$

N.V.V., Phys. Rev. A 58, 2295 (1998)

STIRAP IN MULTISTATE CHAINS: OFF RESONANCE

generally nonzero intermediate-state detunings $\Delta_2, \Delta_3, \ldots, \Delta_{N-1}$

chains with even and odd N behave similarly: AT state may or may not exist! $\psi_1 \stackrel{-\infty \leftarrow t}{\longleftarrow} \chi_T(t) \stackrel{t+\infty}{\longrightarrow} \psi_N$

N.V.V., Phys. Rev. A 58, 2295 (1998)

STIRAP IN MULTISTATE CHAINS: OPTIMIZATION

N.V.V., B.W. Shore, K. Bergmann, Eur. Phys. J. D 4, 15 (1998)

Nikolay V. Vitanov Adiabatic passage techniques

STIRAP IN MULTISTATE CHAINS: OPTIMIZATION

N.V.V., B.W. Shore, K. Bergmann, Eur. Phys. J. D 4, 15 (1998)

Nikolay V. Vitanov

University of Sofia

Adiabatic passage techniques

STIRAP in parallel multi- Λ system

N.V.V. and S. Stenholm, Phys. Rev. A 60, 3820 (1999)

VARIATIONS OF STIRAP

- ▶ STIRAP in a tripod system (3 ground + 1 excited): two dark states ⇒ creation of superpositions (Unanyan, Theuer, Bergmann)
- ▶ STIRAP between degenerate levels (Shore, Bergmann, Shapiro, Kis)
- cavity-STIRAP (pump-vacuum or vacuum-Stokes): single photon pistol (Kuhn, Rempe, Guérin)
- ▶ STIRAP via continuum (1 continuum 3) (Yatsenko, Halfmann, Knight)
- ► STIRAP into continuum (Rangelov)
- ► STIRAP in multiparticle systems: creation of entangled states (Unanyan: spins, Linington: ions)
- ▶ STIRAP in classical systems (Yatsenko: pendula, Rangelov: ED, Coriolis)

....

Level crossing Implementations Multiple crossings Basic STIRAP STIRAP: robustness Multi-STIRAP

MERCI BEAUCOUP! THANK YOU!

Nikolay V. Vitanov Adiabatic passage techniques University of Sofia