Methods of quantum dynamics and simulation of pump-probe spectra

Christoph Meier

Laboratoire Collisions, Agrégats, Réactivité Université Paul Sabatier, Toulouse

Cargese, August 2008

Methods of quantum dynamics and simulation of pump-probe spectra

- I. Introduction Laser / molecule interaction
 - -- electron / nuclei separation
 - -- coupled channel equations
 - -- simulation of pump probe spectra
 - -- numerical implementation
- II. Methods of wave packet propagation
 - -- standard methods: SOD, Crank-Nicholson, FFT-SO
 - -- methods for high dimensional problems: TD-SCF, MCTDH
- III. Outlook and further developments
 - -- 6D quantum wp: vibrational predissociation of 4 atom complex
 - -- Local control and within a mixed qu/classical propagation scheme

Context: Femtosecond laser interaction with atomic and molecular systems

dynamics subject to environments

dynamics of excited states

pulse shaped IR excitation

IVR, electronic / vibrational relaxation, predissociation...

experiment-----theory

Femtosecond spectroscopy in molecular systems

Aim: observation of elementary processes of chemical reactivity at the atomic scale in real time

We want to have access at:

- vibration, geometrical rearrangement
- breaking and formation of bonds
- isomerisation
- IVR
- transitions between electronic states: IC, ISC
- vibrational, electronic relaxation

timescales:

femtosecond: 10⁻¹⁵ s picosecond: 10⁻¹² s

Principle of pump-probe experiments:

Two time-delayed ultrashort laser pulses

Pump pulse: triggers molecular dynamics Probe pulse: probes quantum state at different delay times

I. Introduction

Numerical simulatioins:

- system Hamiltonian:
- dipole interaction Hamiltonian
- electronic/nuclear separation:

$$H^{(s)} = \sum_{n} \frac{\mathbf{P}_{n}^{2}}{2m_{n}} + \sum_{e} \frac{\mathbf{P}_{e}^{2}}{2m_{e}} + V_{c}(\mathbf{r}_{n}, \mathbf{r}_{e})$$
$$H = H^{(s)} - \mathbf{\mu} \cdot \mathbf{E} \qquad \mathbf{\mu}(\mathbf{r}_{n}, \mathbf{r}_{e}) = \sum_{\alpha} q_{\alpha} \mathbf{r}_{\alpha}$$
$$\Psi(\mathbf{r}_{n}, \mathbf{r}_{e}, t) \rangle = \sum_{\alpha} \chi_{i}(\mathbf{r}_{n}, t) |\varphi_{i}(\mathbf{r}_{e}; \mathbf{r}_{n})\rangle$$

$$= \langle e_n, e_e, r_n \rangle = \langle \varphi_i(\mathbf{r}_e; \mathbf{r}_n) \rangle = V_i(\mathbf{r}_n) | \varphi_i(\mathbf{r}_e; \mathbf{r}_n) \rangle$$
$$= \langle \varphi_i(\mathbf{r}_e; \mathbf{r}_n) | \boldsymbol{\mu} | \varphi_j(\mathbf{r}_e; \mathbf{r}_n) \rangle$$

$$\begin{split} i \left| \dot{\Psi} \right\rangle &= \left(H^{(s)} - \boldsymbol{\mu} \cdot \mathbf{E}(t) \right) \Psi \rangle \\ \sum_{i} i \dot{\chi}_{i}(\mathbf{r}_{n}, t) \left| \varphi_{i}(\mathbf{r}_{e}; \mathbf{r}_{n}) \right\rangle &= H^{(s)} \sum_{i} \chi_{i}(\mathbf{r}_{n}, t) \left| \varphi_{i}(\mathbf{r}_{e}; \mathbf{r}_{n}) \right\rangle - \mathbf{E}(t) \boldsymbol{\mu} \sum_{i} \chi_{i}(\mathbf{r}_{n}, t) \left| \varphi_{i}(\mathbf{r}_{e}; \mathbf{r}_{n}) \right\rangle \\ \text{also:} \quad H^{(s)} &= \sum_{n} \frac{\mathbf{P}_{n}^{2}}{2m_{n}} + \sum_{e} \frac{\mathbf{P}_{e}^{2}}{2m_{e}} + V_{c}(\mathbf{r}_{n}, \mathbf{r}_{e}) = -\sum_{n} \frac{1}{2m_{n}} \nabla_{n}^{2} + H^{(e)} \\ T_{N} \end{split}$$

$$i\dot{\chi}_{j}(\mathbf{r}_{n},t) = -\sum_{i}\sum_{n}\frac{1}{2m_{n}}\left\langle\varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n})\middle|\nabla_{n}^{2}\chi_{i}(\mathbf{r}_{n},t)\middle|\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n})\right\rangle + V_{j}(\mathbf{r}_{n})\chi_{j}(\mathbf{r}_{n},t) - \mathbf{E}(t)\sum_{i}\mu_{ij}\chi_{i}(\mathbf{r}_{n},t)$$

$$\begin{split} \dot{i}\dot{\chi}_{j}(\mathbf{r}_{n},t) &= -\sum_{i}\sum_{n} \frac{1}{2m_{n}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}^{2} \chi_{i}(\mathbf{r}_{n},t) | \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle + V_{j}(\mathbf{r}_{n})\chi_{i}(\mathbf{r}_{n},t) - \mathbf{E}(t)\sum_{i} \mathbf{\mu}_{ij} \chi_{i}(\mathbf{r}_{n},t) \\ \hline \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle \frac{1}{2m_{n}} \nabla_{n}^{2} \chi_{i}(\mathbf{r}_{n},t) + \frac{1}{m_{n}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle \nabla_{n}\chi_{i}(\mathbf{r}_{n},t) \\ \hline \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle \frac{1}{2m_{n}} \nabla_{n}^{2} \chi_{i}(\mathbf{r}_{n},t) + \frac{1}{m_{n}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle \nabla_{n}\chi_{i}(\mathbf{r}_{n},t) \\ \hline \end{pmatrix} \\ \mathbf{Properties of} \quad \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = \langle \nabla_{n}\varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle + \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = 0 \\ = \langle \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle + \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = 0 \\ \Rightarrow \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = -\langle \varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = 0 \\ i\dot{\chi}_{j}(\mathbf{r}_{n},t) = \underbrace{(T_{n}+V_{j}(\mathbf{r}_{n}))}_{\hat{H}_{j}}\chi_{i}(\mathbf{r}_{n},t) + \sum_{i\neq j} \underbrace{(\sum_{n}\frac{1}{m_{n}}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = 0 \\ i\dot{\chi}_{j}(\mathbf{r}_{n},t) = \underbrace{(T_{n}+V_{j}(\mathbf{r}_{n}))}_{\hat{H}_{j}}\chi_{i}(\mathbf{r}_{n},t) + \sum_{i\neq j} \underbrace{(\sum_{n}\frac{1}{m_{n}}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) \rangle = 0 \\ i\dot{\chi}_{j}(\mathbf{r}_{n},t) = \underbrace{(T_{n}+V_{j}(\mathbf{r}_{n})}_{\hat{H}_{j}}\chi_{i}(\mathbf{r}_{n},t) + \sum_{i\neq j} \underbrace{(\sum_{n}\frac{1}{m_{n}}} \langle \varphi_{j}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{e};\mathbf{r}_{n}) | \nabla_{n}\varphi_{i}(\mathbf{r}_{n},t) - \mathbf{E}(t)\sum_{i} \mathbf{\mu}_{ij}\chi_{i}(\mathbf{r}_{n},t) \\ \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},\mathbf{r}_{j},t) + \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},\mathbf{r}_{j},t) | \nabla_{n}(\mathbf{r}_{j},t) - \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},t) - \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},t) | \nabla_{n}(\mathbf{r}_{j},t) - \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},t) | \nabla_{n}(\mathbf{r}_{j},t) - \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},t) | \nabla_{n}(\mathbf{r}_{j},t) - \underbrace{(\tilde{H}_{j}(\mathbf{r}_{j},t) | \nabla_{n$$

- Aim pump probe: choose two laser pulses with variable delay to study the combined electronic / nuclear dynamics
- Aim coherent control: choose (complex-shaped) laser pulses to induce a predifined dynamics (wrt a specific exit channel)

$$i\frac{\partial}{\partial t}\chi_{j}(\mathbf{r}_{n},t) = \left(\hat{H}_{j} - \mathbf{E}(t)\mathbf{\mu}_{jj}\right)\chi_{j}(\mathbf{r}_{n},t) + \sum_{i\neq j}\left(V_{ij}^{(na)} - \mathbf{E}(t)\mathbf{\mu}_{ij}\right)\chi_{i}(\mathbf{r}_{n},t)$$
Vibrational excitation, non-adiabatic couplings
IR
Nuclear dynamics in electronic ground state

$$i\partial_{t}\chi_{g} = \hat{H}_{g}\chi_{g} - \mathbf{E}\mathbf{\mu}_{gg}\chi_{g}$$

$$\chi_{g}(t) = Te^{-i\int_{0}^{t}(\hat{H}_{g} - \mathbf{E}\mathbf{\mu})dt'}\chi_{g}(0)$$

$$\chi_{g}(t + \delta t) = e^{-i(\hat{H}_{g} - \mathbf{E}\mathbf{\mu})\delta t}\chi_{g}(t)$$
In both cases:

$$\chi_{i}(t + \delta t) = e^{-i\hat{H}_{i}(t)\delta}\chi_{g}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t + \delta t) = e^{-i\hat{H}_{i}(t)\delta}\chi_{i}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t + \delta t) = e^{-i\hat{H}_{i}(t)\delta}\chi_{i}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t)$$

$$\chi_{i}(t + \delta t) = e^{-i\hat{H}_{i}(t)\delta}\chi_{i}(t)$$

$$\chi_{i}(t)$$

II. Methods of wave packet propagation

Methods of wave packet propagations have a wide range of applications, well beyond laser pulse interactions with atomic / molecular systems

e.g:

- atomic and molecular physics: [see also: D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective (University Science Press, Sausalito, 2006)]
 - -- elastic / inelastic collisions, reactive scattering
 - -- spectroscopy via correlation functions
 - -- explicit time dependent perturbations, laser interactions, coherent control
- Optics: Maxwell's equation
-

Example:

propagation of electromagnetic waves in nanostructures

$$\dot{\mathbf{D}} = c \nabla \times \mathbf{H}$$
 $\mathbf{D} = \varepsilon \mathbf{E}$

 $\dot{\mathbf{B}} = -c\nabla \times \mathbf{E}$ $\mathbf{B} = \mu \mathbf{H}$

$$\psi = \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \qquad H = \begin{pmatrix} 0 & i\frac{c}{\varepsilon}\nabla\times\\ -i\frac{c}{\mu}\nabla\times & 0 \end{pmatrix} \qquad \mathbf{i}\,\mathbf{\dot{\psi}} = H\,\mathbf{\psi}$$

- can be scaled to be hermitian
- Can be formulated for dispersive media
- Application: light transmission through nanostructured apertures

[A. G. Borisov, S. V. Shabanov, J. Comp. Phys. 209 643 (2005)]

$$\chi_{i}(t+\delta t) = e^{-i\hat{H}_{i}(t)\delta t} \chi_{i}(t)$$

$$U_{i}(t) \qquad \text{quantum propagator}$$

$$U_i^{(app)} \int U_i^{(app)} = 1$$
 norm should be conserved

$$\left\langle \chi_{e}(t+\delta t) \middle| \chi_{e}(t+\delta t) \right\rangle = \left\langle U_{i}^{(app)} \chi_{e}(t) \middle| U_{i}^{(app)} \chi_{e}(t) \right\rangle = \left\langle \chi_{e}(t) \middle| \chi_{e}(t) \right\rangle$$

• propagation not exact, discretisation error, should always be converged for $\delta t \rightarrow 0$

Can also be used fore the propagation of density matrices

Second order differencing (SOD):

• derivation:

$$\chi(t + \Delta t) = (1 - i\hat{H}\Delta t)\chi(t)$$

$$\chi(t - \Delta t) = (1 + i\hat{H}\Delta t)\chi(t)$$

$$\chi(t + \Delta t) - \chi(t - \Delta t) = -2i\hat{H}\Delta t\chi(t)$$

• method:

 $\chi(t + \Delta t) = \chi(t - \Delta t) - 2iH\Delta t\chi(t)$

- characteristics:
 - -- storage:
 - -- operations:
 - -- stablility:

$$\chi(t), \chi(t - \Delta t)$$
$$\hat{H}\chi(t)$$
$$\Delta t < \frac{1}{E_{\text{max}}}$$

Cayley (Crank-Nicholson) :

• derivation:

- method:
- characteristics:
 - -- storage:
 - -- operations:
 - -- norm-conserving
 - -- symetric wrt.

$$e^{i\frac{\Delta t}{2}\hat{H}}\chi(t+\Delta t) = e^{-i\frac{\Delta t}{2}\hat{H}}\chi(t)$$

$$\left(1+i\hat{H}\frac{\Delta t}{2}\right)\chi(t+\Delta t) = \left(1-i\hat{H}\frac{\Delta t}{2}\right)\chi(t)$$

$$\chi(t+\Delta t) = \underbrace{\left(1+i\hat{H}\frac{\Delta t}{2}\right)^{-1}\left(1-i\hat{H}\frac{\Delta t}{2}\right)\chi(t)}_{\text{problem: inversion}}$$

$$\chi(t+\Delta t) - \chi(t) = -i\Delta t\hat{H}\left(\frac{\chi(t+\Delta t)+\chi(t)}{2}\right)$$

$$\chi(t + \Delta t) = \chi(t) + \xi$$
$$\xi = -i\frac{\Delta t}{2}\hat{H}(\xi + 2\chi(t))$$

 $\chi(t), \xi$ $\hat{H}\chi(t)$

$$\Delta t \to -\Delta t$$

FFT-Split Operator (FFT-SO) :

derivation:

$$\hat{H} = T(\frac{\partial}{\partial \mathbf{r}_n}) + V(\mathbf{r}_n)$$

$$\chi(t + \Delta t) = e^{-i\Delta t\hat{H}} \chi(t) \approx e^{-i\frac{\Delta t}{2}V} e^{-i\Delta tT} e^{-i\frac{\Delta t}{2}V} \chi(t)$$

• Fourier representation:

$$\chi(t + \Delta t) = e^{-i\frac{\Delta t}{2}V(r_n)} \sum_{j=0}^{N-1} \frac{1}{\sqrt{N}} e^{2\pi i \left(\frac{jn}{N}\right)} e^{-i\Delta t \left(\frac{\hbar^2}{2m}k_j^2\right)} \left(\sum_{n'=0}^{N-1} \frac{1}{\sqrt{N}} e^{2\pi i \left(\frac{jn'}{N}\right)} e^{-i\frac{\Delta t}{2}V(r_n)} \chi(t)\right)$$

$$e^{-i\frac{\Delta t}{2}V} FFT^{-1} e^{-i\Delta tT} FFT e^{-i\frac{\Delta t}{2}V}$$
method:
$$\chi(t + \Delta t) = e^{-i\frac{\Delta t}{2}V} \underbrace{FFT^{-1}}_{2} e^{-i\Delta tT} \underbrace{FFT}_{2} e^{-i\frac{\Delta t}{2}V} \chi(t)$$

- characteristics:
 - -- storage:
 - -- operations:
 - -- stable, norm-conserving
 - -- symetric wrt

 χ multiplications, FFT, no $\hat{H}\chi$!

 $\Delta t \rightarrow -\Delta t$

[M. D. Feit, J. A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)]

Overview / comparison:

	avantages	désavantages
SOD	 flexible: any representation H time dependent 	 small timestep
Crank-Nicolson (implicit)	 flexible: any representation H time dependent unitary 	 iteration at every timestep
FFT-SO	 FFT: efficient no matrix-vector multiplication H time dependent unitary 	 equidistant grids <i>H</i> : no cross-terms

Quantum wave packet for high-dimensional problems:

- N particles, 3N-6 internal DoF, (10 points/basis fcts per DoF)
- calculation of spectrum / dynamics
- exponential scaling

CPU time: 1sec

N=4 16000Gb CPU time:10 days

Approximations

- approximate dynamics. TD-SCF, MCTDH
- dynamics in reduced dimensionality
- symmetry, periodicity
- harmonic approximation
- classical mechanics (trajectoires)
- mixed quantum/classical dynamics

II. Methods of wave packet propagation: TD-SCF

consider 2 DoF for the presentation of the basic idea, but the usefulness lies in the extension to many DoF

- TD-SCF: suppose wf can be described by a $\chi(x, y, t) = d$ product
- Rem: this decomposition is not unique !
 → constraints
- Schrödinger equation becomes:
- Schrödinger eq. in 2D is replaced by 2 coupled 1D equations
- Dynamics in one DoF is determined by the dynamic mean field over the other DoF
- even if H is time independent, $H^{(x)}$ and $H^{(y)}$ are time-dependent !
- can be used for up to ~100 DoF !
- **disavantage**: approximate, error hard to estimate

$$\chi(x, y, t) = a(t) \phi^{(x)}(x, t) \phi^{(y)}(y, t)$$
$$\left\langle \dot{\phi}^{(x)} \middle| \phi^{(x)} \right\rangle = \left\langle \dot{\phi}^{(y)} \middle| \phi^{(y)} \right\rangle = 0$$

$$i\dot{a}(t) = \overline{H}a(t)$$

$$i\dot{\phi}^{(x)}(x,t) = (H^{(x)} - \overline{H})\phi^{(x)}(x,t)$$

$$i\dot{\phi}^{(y)}(y,t) = (H^{(y)} - \overline{H})\phi^{(y)}(y,t)$$

$$\overline{H} = \langle \phi^{(x)} | \langle \phi^{(y)} | H | \phi^{(x)} \rangle | \phi^{(y)} \rangle$$

$$H^{(x)} = \langle \phi^{(y)} | H | \phi^{(y)} \rangle$$

$$H^{(y)} = \langle \phi^{(x)} | H | \phi^{(x)} \rangle$$

consider 2 DoF for the presentation of the basic idea, but the usefulness lies in the extension to many DoF

• MCTDH: multi-configurational expansion of the wavefunction

Rem: this is not unique ! \rightarrow constraints

$$\chi(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} a_{nm}(t) \phi_n^{(x)}(x, t) \phi_m^{(y)}(y, t)$$
$$\left\langle \dot{\phi}_n^{(x)} \middle| \phi_{n'}^{(x)} \right\rangle = \delta_{nn'} \qquad \left\langle \dot{\phi}_m^{(y)} \middle| \phi_{m'}^{(y)} \right\rangle = \delta_{mm'}$$

- Schrödinger equation becomes:
 - -- coupled equations for the $a_{nm}(t), \phi_n^{(x)}(x,t), \phi_m^{(y)}(y,t)$
 - -- for $N \to \infty$ and $M \to \infty$, $\phi_n^{(x)}(x,t), \phi_m^{(y)}(y,t)$ become complete:

 \rightarrow MCDTH becomes an exact standard method

 $\rightarrow \phi_n^{(x)}(x,t), \phi_m^{(y)}(y,t)$ become time independent

- flexible, any representation is possible, different representations for different DoF possible
- gain in storage requirements: for N_b and M_b basis fcts/grid points N* N_b+M* M_b + N*M vs. N_b*M_b generally: N<<N_b M<<M_b,

U. Manthe, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992); H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Letters 165, 73 (1990). consider 2 DoF for the presentation of the basic idea, but the usefulness lies in the extension to many DoF

 $| \Psi m$

m'm

m=1

MCTDH: multi-configurational ۲ expansion of the wavefunction

> **Rem**: this is not unique ! \rightarrow constraints

Schrödinger becomes:

$$\chi(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} a_{nm}(t) \phi_{n}^{(x)}(x, t) \phi_{m}^{(y)}(y, t)$$

$$\left\langle \dot{\phi}_{n}^{(x)} \middle| \phi_{n'}^{(x)} \right\rangle = \delta_{nn'} \qquad \left\langle \dot{\phi}_{m}^{(y)} \middle| \phi_{m'}^{(y)} \right\rangle = \delta_{mm'}$$

$$i \dot{a}_{n'm'}(t) = \sum_{n=1}^{N} \sum_{m=1}^{M} \overline{H}_{n'nm'm} a_{nm}(t)$$

$$i \sum_{n=1}^{N} \rho_{n'n}^{(x)} \middle| \dot{\phi}_{n}^{(x)} \right\rangle = (1 - P^{(x)}) \sum_{n=1}^{N} H_{n,n'}^{(x)} \middle| \phi_{n}^{(x)} \right\rangle$$

$$i \sum_{m=1}^{M} \rho_{m'm}^{(y)} \middle| \dot{\phi}_{m}^{(y)} \right\rangle = (1 - P^{(y)}) \sum_{m=1}^{M} H_{m,m'}^{(y)} \middle| \phi_{m}^{(y)} \right\rangle$$

$$P^{(x)} = \sum_{n=1}^{N} \left| \phi_n^{(x)} \right\rangle \left\langle \phi_n^{(x)} \right|$$
$$P^{(y)} = \sum_{m=1}^{M} \left| \phi_m^{(y)} \right\rangle \left\langle \phi_m^{(y)} \right|$$

$$\rho_{nn'}^{(x)} = \sum_{m=1}^{M} a_{n'm}^* a_{nm}$$
$$\rho_{mm'}^{(y)} = \sum_{m=1}^{N} a_{nm}^* a_{nm'}$$

n=1

$$\overline{H}_{n'nm'm} = \sum_{n=1}^{N} \sum_{m=1}^{M} \left\langle \phi_{n'}^{(x)} \left| \left\langle \phi_{m'}^{(y)} \left| H \right| \phi_{m}^{(y)} \right\rangle \right| \phi_{n}^{(x)} \right\rangle$$
$$H_{n'n}^{(x)} = \sum_{m=1}^{M} \sum_{m'=1}^{M} a_{n'm'}^{*} a_{nm} \left\langle \phi_{m'}^{(y)} \left| H \right| \phi_{m}^{(y)} \right\rangle$$
$$H_{m'm}^{(y)} = \sum_{n=1}^{N} \sum_{n'=1}^{N} a_{n'm'}^{*} a_{nm} \left\langle \phi_{n'}^{(x)} \left| H \right| \phi_{n}^{(x)} \right\rangle$$

m=1

- quantum wave packet methods
- errors: representation errors, errors in the calculation of the propagator
- avantages / disadvantages
- feasible for moderate number of DoF: 1-3
- for more than 3 DoF: MCTDH, else: \rightarrow approximations

References:

Méthodes de propagation de paquets d'ondes:

C. Cerjan, N umerical Grid methods and their application to the Schrödinger equation, Kluwer, 1993. C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G.Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff J. Comp. Phys. 94, 59 (1991) R. Kosloff, J. Chem. Phys. 92, 2087 (1988)

Multiconfiguration time-dependent Hartree:

M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, Phys. Reports, 324, 1 (2000); U. Manthe, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992); H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Letters 165, 73 (1990).

III. Outlook + future developments

- \rightarrow Dynamical processes of more complex systems
 - -- More degrees of freedom
 - -- Non-isolated systems (effects of environment, decoherence...)
- \rightarrow Control by complex shaped laser pulses, spectral regions IR, UV,XUV

pulse shaped IR excitation Hb-CO

Local control scheme Mixed qu/cl dynamics

III. Outlook + future developmer

Exemple: vibrational predissociation of I₂Ne₂

- model system to study the sovlant-solute interactions
- weak van der Waals interaction:

Challenges:

- zero-point energy effects important
- 1 quantum of vibration of I₂ is enough to dissociate one
- strongly correlated dynamics of the two Ne atoms

Quantum treatment in `full dimensionality'

- reference calculation for approximate schemes
- processus studied:

vibrational predissociation of : $I_2(B,n=21)Ne_2 \rightarrow I_2(B,n=20)Ne + Ne$

 \rightarrow I₂(B,n=19)Ne + Ne

[C. Meier, U. Manthe, J. Chem. Phys. 115, 5477 (2001)]

Satellite coordonnées (non-orthogonal):

 $\begin{array}{ll} r & \mbox{distance I-I} \\ R_1, R_2 & (\mbox{centre of mass I}_2 \,)\mbox{-Ne} \\ \theta_1, \theta_2 & \mbox{angle (} r, R_{1,2} \,) \\ \phi & \mbox{angle between the I-I-Ne planes} \end{array}$

$$H(r, R_1, R_2, \theta_1, \theta_2, \phi) = -\frac{1}{2\mu_{I_2}} \left(\frac{1}{r} \frac{\partial^2}{\partial r^2} r \right) + \sum_{i=1,2} -\frac{1}{2\mu_i} \left(\frac{1}{R_i} \frac{\partial^2}{\partial R_i^2} R_i \right) + \left(\frac{1}{2\mu_{I_2} r^2} + \frac{1}{2\mu_i R_i^2} \right) \left(\frac{1}{\sin \theta_i} \frac{\partial}{\partial \theta_i} \sin \theta_i + \frac{1}{\sin^2 \theta_i} \frac{\partial^2}{\partial \phi^2} \right)$$
$$+ \sum_{\gamma, \lambda = R_1, R_2, \theta_1, \theta_2, \phi} - V(r, R_1, R_2, \theta_1, \theta_2, \phi)$$

wave packet propagation using the MCTDH scheme in 6 D

$$\psi(r, R_1, R_2, \theta_1, \theta_2, \phi, t) = \sum_{n_1=1}^{N_1} \cdots \sum_{n_6=1}^{N_6} a_{n_1 \cdots n_6} \chi_{n_1}^{(1)}(r, t) \chi_{n_2}^{(2)}(R_1, t) \chi_{n_3}^{(3)}(R_2, t) \chi_{n_4}^{(4)}(\theta_1, t) \chi_{n_5}^{(5)}(\theta_2, t) \chi_{n_6}^{(6)}(\phi, t)$$

coordinate	N _i (SPF)	nbr. of basis fct.	representation
r	5	49	fct. propres de l ₂
R_1	20	384	FFT
R_2	20	384	FFT
θ_1	4	80	Legendre DVR
θ_2	4	80	Legendre DVR
ϕ	6	192	FFT

number of configurations: 192000 Hamiltonian matrix in standard method: $\sim 10^{13} \times 10^{13}$

III. Outlook + future developments

• life time of the resonance: $I_2(B,n=21)Ne_2$: ~55 ps

process: $I_2(B,v=21) \text{ Ne}_2 \rightarrow I_2(B,v=20) \text{ Ne} + \text{ Ne}$: IVR process: $I_2(B,v=21) \text{ Ne}_2 \rightarrow I_2(B,v=19) \text{ Ne} + \text{ Ne}$: direct

• dynamical process requires QM and full dimensionality !

Exemple: Multiphoton IR excitation of HbCO with shaped pulses

Why?

- CO vibration as local probe of protein environment
- studies of vibrational relaxation: relaxation pathways – flow of energy
- inducing conformal changes ?
 "ground state chemistry"

aim:

- depositing as much energy in the COstretch as possible :
- → conformal changes ?
- ➔ ground state dissociation ?
- ➔ energy relaxation pathways
- exciting single vibrational states or coherent superpositions of states
- subsequent measures of state resolved relaxation times, decoherence: sensitive measure of environment / protein dynamics

Mixed quantum-classical dynamics

quantum: $\psi(q,t)$

Schrödinger equation

q: CO stretch within FeP(Im)-CO complex

 $i\frac{\partial}{\partial t}\psi(q,t) = \left(-\frac{1}{2}\frac{\partial^2}{\partial q^2} + V(q,\mathbf{r}_1\cdots\mathbf{r}_N) + \vec{\mu}(q,\mathbf{r}_1\cdots\mathbf{r}_N)(\vec{E}_{prot}(t) + \vec{E}(t))\right)\psi(q,t)$

$$\approx H_0(q) + H_f(q, \mathbf{r}_1 \cdots \mathbf{r}_N) + \vec{\mu}(q, \mathbf{r}_1 \cdots \mathbf{r}_N) \vec{E}(t)$$

classical: $\mathbf{r}_i(t)$

Newtons equations

$$\ddot{\mathbf{r}}_i(\mathbf{t}) = -\frac{1}{m_i} \nabla_{\mathbf{r}_i} V(\overline{q}, \mathbf{r}_1 \cdots \mathbf{r}_N)$$

no back-reaction: force is evaluated at CO equilibrium position \overline{q}

[include backreaction → future]

→2 step simulation: 1. Charmm with CO fixed

2. multiple quantum wave packet calculations

with fluctuations in potential + dipole orientation

Observables, density matrices and Local control

and lots more...

• simulations: 1000 mixed qu/classical runs for isotropically oriented sample

$$E(t) \approx \pm i f(t) \frac{1}{N} \sum_{i=1}^{N} \cos \theta_i \left\langle \psi_i(t) \left| \left[\mu, H_0 \right] \right| \psi_i(t) \right\rangle$$

f(t) chosen to ensure pulse lengths of: 1ps, 1.5 ps, 2ps, 2.5 ps and constant intensity: 1 µJ @ 40 µm (parameters of IR pulse shape experiments of M. Joffre, LOB, Paris [1])

• comparison with \rightarrow non-fluctuating system, isotropic

[1] C. Ventalon et al, PNAS, 101, 13216 (2004)

- future + + :
- -- development of mixed quantum / classical approaches
- -- application to realistic systems
- -- control in dissipative environments
- -- combination of MCTDH and classical mechanics
- funding: ANR French ministry: \rightarrow post doc position