Acousto-Optic Dispersive Filter

Daniel Kaplan Fastlite Palaiseau, France

Pulse Shaping I : Spatial Separation

Grating Compressor

Pulse Shaping II : Diffraction by aperiodic structure

Chirped Mirror Dielectric Structure

Semi-quantitative Understanding Delay vs frequency control

Quantitative Point of Vue K-Conservation + Phase transfer

 $E_{out}(t) \propto S(t/\alpha) \otimes E_{in}(t)$ où $\alpha = \frac{f_{ac}}{f_{opt}} \approx 10^{-7} \implies E_{out}(\omega) \propto S(\alpha \omega) E_{in}(\omega)$

Materials

	Window	Optical index/biref	Velocity of sound	Densit y	Acousto- optic coeff.	М
	(μm)	n _{o/} ′dn	V(m/s)	ρ	р	(mm²/GW)
MgF ₂	0.11 - 7.5	1.4/0.01	2830	3.18	0.05	0.3
α -Quartz	0.15 - 4.5	1.6/0.01	3360	2.65	0.06	0.6
KDP	0.20 - 1.7	1.5/0.05	1650	2.34	0.07	6
Te0 ₂	0.35 - 4.5	2.2/0.15	615	5.99	0.09	800
Hg ₂ Cl ₂	0.38 - 28	2.0/0.60	347	7.19	0.056	1030

Pros and Cons Aopdf vs LCD

- Simple
- Stable
- Quantitative
- Power limitations
- Rep. Rate considerations

Spectral Resolution

- Number of independent points
- BT product
- Examples
 - Spatial LCD
 - K*N K<0.5 N~512 BT=256

Diffraction Dazzler T=6 ps B=10%(@800nm) BT = 225

Throughput Efficiency

Examples

Spatial LCD

Grating^{2*}LCD 70%

Diffraction Dazzler

Band : 100nm (@800nm) 30% to 80%

Power Limitations

- Thick usely highly non linear material
 - Typical limit is 30 microjoules in Dazzler at 500 to 800 nm
 - Expressed in Energy not Power due to self dispersion
 - LCD pulse shaper can do one to two orders of magnitude better.

Repetition Rate

- Propagation time tens of microseconds
- High rate pulses ->
 - Partially diffracted pulses
 - Limit duty cycle (e.g. 50%)
 - Pulses with different self dispersion
 - Limit bandwidth (e.g. 10 nm)
 - Regardless good two photon imaging with oscillators has been obtained
 - GVD scanning experiments

Sub 10fsec Amplifiers: Post compensation (TU WIEN)

Oscill.
$$\rightarrow$$
 PreAmp. \rightarrow Hollow fiber \rightarrow Dazzler \rightarrow Ampli.

J.Seres et al. « Sub-10-femtosecond, terawatt-scale Ti:sapphire laser system » Optics Letters, **28**, 19, p.1832-1834, (October 1,2003)

Direct UV pulse shaping : UV-AOPDF KDP

Interferometric Configuration

Interferometric and not intensimetric

Intensimetric Configuration

Trick: polarization multiplexing and type II SHG

