Ultrafast intersystem crossing in benzene: Towards coherent control

Russell Minns, Abigail Nunn, Dorian Parker, Helen Fielding Department of Chemistry, UCL

Tom Penfold, Graham Worth

Department of Chemistry, University of Birmingham

Femtosecond molecular dynamics

- Typical vibration period for covalent bond is ~10 fs.
- Applications of femtosecond lasers to probe dynamics on this timescale – Ahmed Zewail 1999 Chemistry Nobel Prize.
- 21st century challenge is to obtain **detailed** understanding of dynamics at level of quantum mechanics and to **control** molecular dynamics.

≜UCL

Ultrafast intersystem crossing in benzene

Russell Minns and Dorian Parker

Benzene "channel 3"

non-radiative decay rate

J.H.Callomon et al. Chem. Phys. Lett. 13 125 (1972)

Benzene "channel 3"

E. Riedle et al. Faraday. Discuss. Chem. Soc. 75, 387. (1983)

≜UCL

Experiment

Time-resolved photoelectron imaging

Eppink and Parker, Rev. Sci. Instrum. 68 3477 (1997) 7

Benzene S₁ decay dynamics

Benzene S₁ decay dynamics

≜UC L

Photoelectron images

Wave packet motion

≜UCL

Wave packet motion

Photoelectron images

Doorway state

Doorway state

To be submitted to J. Chem. Phys.

Quantum dynamics simulations

Tom Penfold and Graham Worth, Birmingham

Coherent control

- Exploit the simple oscillation and use pulse sequences to control the composition of the wave packet
- Use shaped wave packets to manipulate the lifetime
- What is the route to the fulvene isomer?

Pulse shaping in the UV

Dorian Parker, Abigail Nunn and Russell Minns

Sauerbrey et al. Appl. Phys. B 73 272 (2001): Shaped 400 nm light using type I SHG

≜UC L

Pairs of pulses at 254 nm

Submitted to Appl. Phys. B

Pair of pulses at 253.6 and 254.6 nm (τ = 650 fs)

Summary and outlook

- Observation of ultrafast ISC in a hydrocarbon, which is without precedent.
 - Singlet-triplet coupling usually weak.
- Increase the energy of the probe photon in TRPES experiments to access the entire reaction coordinate.
- Coherent control (pulse sequences and shaping)
 - Control ISC
 - Detect the fulvene isomer and improve its yield

Acknowledgements

EPSRC, Leverhulme Trust, Royal Society, UCL

Russell Minns Dorian Parker Abigail Nunn

Tom Penfold Graham Worth

Benjamin Lasorne Mike Bearpark Mike Robb

Antoine Monmayrant Laura Corner Adam Wyatt Ian Walmsley

Beatrice Chatel