Non-linear XUV processes (a) intense, sub-fs radiation sources

D. Charalambidis FO.R.T.H. - I.E.S.L./ Univ. of Crete

chara@iesl.forth.gr

E. Benis

Post-doc

C. Kalpouzos

A. Peralta Conde

Ph.D

J. Kruse

E. Skatzakis

Technician G. Maravelias

In collaboration with

G. Tsakiris

Y. Nomura

R. Hörleine

S. G. Rykovanov F. Krausz

L. Nikolopoulos B. Dromey M. Zepf

O. Faucher

M. Vrakking AMOLF

FASTQUAST Kick-off meeting

Cargese, Corsica 20 August, 2008

ULF LaserLab Europe, ELI-RI PP, X-HOMES (TOK), FASTQUAST (RTN)

Non-linear XUV processes

Metrology of ultra-short pulses & ultra-fast dynamics

Current & foreseen sources of short XUV/x-ray pulses

Source	ħω	τ	E (@ the source)	l _{max} (@ the target)
Gas HOHG	20 -100eV	~ 100as	≤1nJ	<10 ¹¹ W/cm ²
single pulse				
Gas HOHG pulse trains	10 -100eV	≥ 300as ≥ 10fs envelope	≤1µJ	<10 ¹⁴ W/cm ²
Surface HOHG (current)	10s of eV - few keV	~ 900 fs ~40fs envelope	≤1μJ	<10 ¹² W/cm ²
Surface HOHG (future)	10s of eV - few keV	≥ 5as	≤ 100mJ**	~10 ²⁵ W/cm ² **
XFEL (current)	\leq few 100eV*	~ 30fs (?)*	≤10mJ*	10 ¹⁶ W/cm ^{2*}
XFEL (future)	\leq 12.4 keV	?	≤ 100mJ*	10 ¹⁸ W/cm ² (?)

*Source: Technical Design Report & recent publications

** Prediction and/or Vision

Generation of intense attosecond pulse trains & pulses How to do it

- High peak power (many cycle or new generation few cycle) driving pulses
- High conversion efficiency processes
- For depleting targets (e.g. atoms) avoid depletion through:
 - i) Loose focusing
- ii) Short pulse duration

- - P_{med} ·L_{med}= const $P_{XUV} \propto N_{at}^2 \propto S^2$
- For not depleting targets (e.g. surface plasma) use of highest possible intensity through tight focusing

Non-linear XUV processes @ sub-fs scale

Source and diagnostics

Non-linear XUV processes @ sub-fs scale Two-XUV-photon He ionization by a superposition of HOH

N. A. Papadogiannis *et al. Phys. Rev. Lett.* **90**, 133902 (2003)N. A. Papadogiannis et al. Appl. Phys. B**76**, 721 (2003)

Non-linear XUV processes @ sub-fs scale 2nd order intensity AC of attosecond pulse trains

The first direct measurement of asec light bunching!

P. Tzallas *et al. Nature* **426**, 267 (2003) L. A. A. Nikolopoulos *et. al. Phys. Rev. Lett.* **94**, 113905 (2005)

Non-linear XUV processes @ sub-fs scale The split mirror NL volume autocorrelator

Non-linear XUV processes @ sub-fs scale Two-XUV-photon direct double ionization in Kr and Ar

Towards NL XUV processes with isolated asec pulses Polarization gating

Towards NL XUV processes with isolated as pulses *Interferometric polarization gating (IPG)*

See also: Y. Silberberg, D.M. Villeneuve et al. PRA 72, 063816 (2006)

Towards NL XUV processes with isolated as pulses IPG results

P. Tzallas et al. Nature Phys. 3, 846 (2007)

Towards NL XUV processes with isolated as pulses

Throughput comparison

D. Charalambidis et al. New J. Phys. 10, 025018 (17pp), (2008)

A new promising attosecond XUV/x-ray source Surface plasma harmonic emission

Surface plasma harmonic emission The coherent wake emission (CWE) regime

Surface plasma harmonic emission

The relativistic oscillating mirror (ROM) regime

T. Baeva, PRE 74, 046404 (2006)

Surface plasma harmonic emission experiments Set up and spectra

Surface plasma harmonic emission experiments

Observation of a two-XUV-photon ionization process

Y. Nomura et al. (submitted)

Surface plasma harmonic emission experiments

2nd order AC measurements

The harmonics from the plasma medium are phase-locked !

Y. Nomura et al. (submitted)

Relativistic plasma attosecond pulse generation Ellipticity dependence & Polarization gating

Linear polarization filter Electron attosecond pulse reflected puls 30 density time (fs) 60 plasma **Circular polarization** 3.9 3.95 4.05 4.1 target x (μm) Electron time (fs) density 60 3.9 3.95 4.05 4.1 x (μm) 25 30

T. Baeva et al., Phys. Rev. E74, R065401(2006)

S. G. Rykovanov et al. New J. Phys. 10, 025025 (2008)

With polarization gating

A new promising asec XUV/x-ray source

PIC simulations of the XUV specs

The Extreme Light Infrastructure

@ ELI front end (5 J, 5 fs , 1 kHz)

The Attosecond Light Source (ALS) @ ELI will be a PW XUV/x-ray source !

High XUV/x-ray intensity applications & ELI NL & high field science @ highest temporal resolution

• Advanced ultra-short pulse metrology (NL AC based approaches for sub-fs pulses)

• Pump-probe studies of ultra-fast dynamics (XUV opening and closing of the attosecond camera shatter

Spatially resolved applications

(nm spatial selectivity, 4D diagnostics), time resolved imaging of nano-objects

• Inner shell non-linear interactions

(Inner shell MPP- MP beyond the electric dipole approximation relativistic intensity regime-Non-perturbative Inner Shell effects -Ultra-fast dynamics of hollow atoms - Ground state stabilization?)

• High XUV/x-ray field science

(NLQED, Fundamental physics, Exotic physics, Nuclear Physics Transmutation induced by laser)

TABLE TOP!