

Yaron Silberberg www.weizmann.ac.il/~feyaron

Physics of Complex Systems Weizmann Institute of Science Rehovot, Israel

Optical Solitons

Coherent Quantum Control

Nonlinear Microscopy

Nonclassical Light

On the Shape of the Photon:

Quantum Coherent Control with Single Photons

www.weizmann.ac.il/~feyaron

Cargese August 2008

Narrow Transitions, Broad Light

Atomic transitions ~ 1 GHz

10 fs pulse ~ 100,000 GHz

Nonresonant Two-Photon Absorption

Perturbation analysis yields:

$$a_f(\infty) \propto \int \varepsilon^2(t) \exp(i\omega_{fg}t) dt$$

Transition is induced by interference of many trajectories:

$$a_f(\infty) \propto \int E(\omega) E(\omega_{fg} - \omega) d\omega$$

Nonresonant TPA

Transform limited pulses are most efficient, but:

Antisymmetric phase has no effect on transition probability

Nonresonant TPA scan of a periodic phase mask

Anti-Symmetric Phase Modulation

Long, weak **AM modulated** pulses induce TPA just like transform limited pulses with the same energy

How long is long?

20 fs pulse modulated by a shaper could becomes ~10 ps

Broadband down-converted light (squeezed vacuum)

TPA with SPDC Light

Broadband down-converted light beams can induce TPA just like an ultrashort pulse with the same bandwidths

$$E_I\left(\frac{1}{2}\omega_P - \Delta\right) \propto E_S\left(\frac{1}{2}\omega_P + \Delta\right)^*$$

when the pump frequency ω_p is tuned to the two-photon overall frequency ω_{fg} :

A complete constructive interference, just like with a transform-limited pulse

Broadband down-converted light beams induce TPA just like a pair of ultrashort pulse with the same bandwidths

(though the light can be continuous)

(though the light is as broadband as a pulse)

TPA with down-converted light

Experimental Results

Temporal resolution as of 23 *fs* pulses, 5 orders of magnitude Below the duration of the light (3 *ns*). Spectral resolution as of the pump (0.04nm) 3 orders of magnitude Below bandwidth of light (~100nm / beam)

B. Dayan, A. Pe'er, A.A. Friesem, Y. Silberberg, *Phys. Rev. Lett*, 93, 023005 (2004)

Controlling TPA

Controlling TPA

B. Dayan, A. Pe'er, A.A. Friesem, Y. Silberberg, Phys. Rev. Lett, 93, 023005 (2004)

Spontaneous Parametric Down-Conversion the bi-photon source

a pump photon is spontaneously converted into two lower frequency photons

QCC with Non-classical Light

Can we shape a single photon? Can we control with single photons?

Spontaneous Down-Conversion: Time-Energy Entangled Photons

Time-Energy Entangled Photons

- The time DIFFERENCE between the photons behaves as a fs pulse ... so lets shape the two-photon correlation function !
- But electronics limits temporal resolution to ~ns

Two-Photon Coincidence Interference : Hong-Ou-Mandel Dip

"Measurement of Subpicosecond Time Intervals between Two Photons by Interference" C.K. Hong, Z.Y. Ou and L. Mandel, PRL 59 (1987)

Indistinguishable Paths

Indistinguishable paths which lead to the same event interfere

Two-Photon Coincidence Interference : Hong-Ou-Mandel Dip

"Measurement of Subpicosecond Time Intervals between Two Photons by Interference" C.K. Hong, Z.Y. Ou and L. Mandel, PRL 59 (1987)

HOM in polarization

A. V. Burlakov et. al., PRA 64, (2001)

Experimental Setup

Experimental Results

Experimental Results

We can shape the two-photon correlation function

Polarization Bell States

Entanglement of signal ($\omega > \omega_p/2$) and idler ($\omega < \omega_p/2$) photons

Nonlinear Optics with Single Photons ?

HOM correlations are nice, but wouldn't it be nicer to have direct detection of photons ?

TPA? SFG?

Nonlinear Optics with Single Photons

Sum-Frequency Generation

$$E(\Omega) \propto \int E(\omega) E(\Omega - \omega) d\omega$$

Coincidence detection through Sum-Frequency Generation (SFG)

How many 'single photons' can arrive in one second ? (How high can 'low light levels' be ?)

The photon-pair arrives within $1/\Delta$

A photon-pair per time-bin \longleftrightarrow n=1 photon per mode

$$\Phi_{\rm max} \approx \Delta \approx 10^{13} {\rm s}^{-1} \approx 2 \mu W !!$$

SFG with Entangled Photons

Quantum mechanical analysis of SFG

$$\begin{array}{c} R_{SFG} \propto \alpha \, n_{_{0}}^{^{2}} + \alpha \, n_{_{0}} \\ \swarrow & \swarrow & \swarrow \\ \propto I^{2} & \propto I \\ \text{Classical} & \text{Entangled photons} \end{array}$$

 n_0 - photons per mode

Nonclassical Excitation for Atoms in a Squeezed Vacuum

N. Ph. Georgiades, E. S. Polzik,*, K. Edamatsu,[†] and H. J. Kimble

Norman Bridge Laboratory of Physics, California Institute of Technology 12-33, Pasadena, California 91125

A.S. Parkins[‡]

Department of Physics, University of Konstanz, Konstanz, Germany (Received 21 April 1995)

The two-photon transition $6S_{1/2} \rightarrow 6D_{5/2}$ is investigated for trapped atomic cesium excited by squeezed light. The rate *R* of two-photon excitation versus intensity *I* is observed to be consistent with the functional form $R = \beta_1 I + \beta_2 I^2$, extending into a region with slope 1.3. This departure from the quadratic form for classical light sources is due to the fundamental alteration of atomic radiative processes by the nonclassical field.

PACS numbers: 42.50.Dv, 32.80.-t

1995: Kimble's group measures a slope of 1.3 at low photon numbers

FIG. 5. Level 3 population ρ_{33} due to two-photon excitation versus intracavity photon number n_{917} at 917 nm. The counting data (R_1, R_2) from five experiments have been scaled as discussed in the text. The full curve is obtained from a numerical solution of the master equation, with the linear and (almost) quadratic components indicated.

Intensity Dependence of SFG with Entangled Photons

"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons",B. Dayan, A. Pe'er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005)

Intensity Dependence of SFG with Entangled Photons

"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons", B. Dayan, A. Pe'er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. **94**, 043602 (2005)

Intensity dependence of SFG with entangled photons

"Nonlinear Interactions with an Ultrahigh Flux of Broadband Entangled Photons", B. Dayan, A. Pe'er, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. **94,** 043602 (2005)

Shaping of Entangeled Photons

Temporal shaping of the two-photon wavefunction

"Temporal Shaping of Entangled Photons", A. Pe'er, B. Dayan, A.A. Friesem and Y. Silberberg, Phys. Rev. Lett. **94**, 073601 (2005)

Mach-Zehnder interferometer

for $\Delta \tau >> 1/B$:


```
for \Delta \tau >> 1/B:
```



```
for \Delta \tau >> 1/B:
```


RT

Electronic detection is not fast enough,

RT

...But SFG is !

```
for \Delta \tau >> 1/B:
```



```
for \Delta \tau >> 1/B:
```


for $\Delta \tau >> 1/B$:

Background-free two-photon interference oscillations

Background-free two-photon interference oscillations

HOM Interference in a coupler

In coupled waveguides there is a $\pi/2$ phase between light in adjacent waveguides

Length [Coupling Lengths]

The 1d waveguide lattice

• The Tight Binding Model (Discrete Schrödinger Equation)

• The discrete nonlinear Schrödinger equation (DNLSE)

$$\left[i\frac{\partial U_n}{\partial z} = \beta_n U_n + C_{n,n\pm 1} \left[U_{n+1} + U_{n-1}\right] + \gamma \left|U_n\right|^2 U_n\right]$$

Periodic Lattices:

Discrete Spatial Optical Solitons (1998) Diffraction Management, (2000). Self-Focusing and Defocusing, dark solitons (2001). Modulational Instability (2002) Vector Solitons (2003) Band Structure and Floquet-Bloch Solitons (2003). Gap solitons (2004) Surface states (2006) Spatio-temporal effects (x-waves) (2007) Quantum & Classical Correlations (2008)

Non-uniform arrays

Bloch Oscillations (1999). Defect States (1999). Binary Arrays (2004) Anderson Localization (2007)

Quantum Correlations in Arrays

Two-Photon Correlations

Experiments with entangled photons in waveguide arrays are tough

But there is a simple classical version...

1956

HB&T claim that they have measured the angular size of Sirius by intensity correlations

The HBT experiment

How could photons generated at two different sides of a star interfere?

HBT and QO

HBT was a key point in the development of quantum optics. It was later explained in terms of particle interference.

HBT has been demonstrated since with electrons, pions and matter waves. It reflects quantum statistics, leading to bunching (bosons) or antibunching (fermions).

Discrete HBT

Discrete HBT Correlations

Discrete HBT Correlations

Nonlinear Discrete HBT !

- Photon Correlations behave much like short pulses
- Shaping of photon correlations
- SFG for photon correlation measurements
- Quantum correlations in periodic structures

Ultrafast Optics group

Coherent Control:

Doron Meshulach Nirit Dudovich Dan Oron Thomas Polack Evgeny Frumker Adi Natan Haim Suchowski Barry Bruner V Prabhudesai

Nonclassical Light:

Barak Dayan Avi Pe'er Itay Afek

Microscopy:

Yaniv Barad Dvir Yelin Eran Tal Ori Katz

Optical Lattices:

Hagai Eisenberg Roberto Morandotti Daniel Mandelik Asaf Avidan Yoav Lahini Yaron Bromberg Gilad Tauber