Narrow Transitions, Broad Light:

Quantum Control of Simple Systems with Shaped Femtosecond Pulses

Yaron Silberberg www.weizmann.ac.il/~feyaron

Cargese August 2008

Ultrafast Optics Group

Yaron Silberberg www.weizmann.ac.il/~feyaron

Physics of Complex Systems Weizmann Institute of Science Rehovot, Israel

Optical Solitons

Coherent Quantum Control

Nonlinear Microscopy

Quantum Optics

Quantum Coherent Control

Use quantum interference to control the evolution of a system

Quantum Coherent Control

... for example by interfering 1 and 3-photon transitions

Brumer & Shapiro Tannor & Rice

Short Pulse = Broad Band

Broad, COHERENT Bandwidth

10 fs pulses @ 800 nm ~130 nm FWHM

Femtosecond Pulse Shaping

Phase, amplitude and polarization synthesizer

Heritage & Weiner Fourier Pulse-Shaping

Femtosecond Pulse Shaping

Phase, amplitude and polarization synthesizer

20 years anniversary Heritage & Weiner Fourier Pulse-Shaping

Narrow Transitions, Broad Light

Atomic transitions ~ 1 GHz

10 fs pulse ~ 100,000 GHz

Crisp, Grichkowsky, Noordam, Girard, Chatel,...

Control of Multiphoton Transition

- 1. Two-Photon Absorption
- 2. Coherent Transients
- 3. Strong Fields
- 4. CARS spectroscopy

Is NLO always best with the shortest, most intense pulses?

Interaction of a broad band pulses and a narrow resonant transition

Resonant excitation of a two-level system

1st Order Time-Dependent Perturbation Analysis

$$a_{f}(t) = \frac{\mu_{fg}}{i\hbar} \int_{-\infty}^{t} dt_{1} \varepsilon(t_{1}) e^{i\omega_{fg}t_{1}}$$

$$a_{f}(\infty) = \frac{\mu_{fg}}{i\hbar} E(\omega_{fg})$$
Pulse Area
$$p_{f}(\infty) \propto \left| E(\omega_{fg}) \right|^{2}$$

$$|g>$$

Transitions only by resonant light Pulse shaping not effective ("Emperor's new clothes?")

Two-photon processes

2nd Order Time-Dependent Perturbation Analysis

$$a_f(\infty) \propto \int \varepsilon^2(t) \exp(i\omega_{fg}t) dt$$

Nonresonant two-photon absorption

2nd Order Time-Dependent Perturbation Analysis

$$a_f(\infty) \propto \int \varepsilon^2(t) \exp(i\omega_{fg}t) dt$$

$$a_f(\infty) \propto \int E(\omega) E(\omega_{fg} - \omega) d\omega$$

Nonresonant TPA

Transform limited pulses are most efficient, but:

Antisymmetric phase has no effect on transition probability

Nonresonant TPA

modulation with a periodic phase

Energy level structure of Cesium

Nonresonant TPA-Experimental Set-Up

Nonresonant TPA: modulation of a periodic phase mask

Meshulach & Silberberg, Nature, 396, 239 (1998)

Nonresonant TPA scan of a periodic phase mask

Meshulach & Silberberg, Nature, **396**, 239 (1998)

Nonresonant TPA Control by Phase Step

Antisymmetric phase has no effect on transition probability Certain spectral phase functions can annihilate the absorption rate

Meshulach & Silberberg, Nature, 396, 239 (1998), Phys. Rev. A 60, 1287 (1999)

Dark Pulses

The spectrum of $\varepsilon^2(t)$ should have a zero at the resonant frequency

$$a_f(\infty) \propto \int \varepsilon^2(t) \exp(i\omega_{fg}t) dt = 0$$

Resonant TPA

$$a_{f}(\infty) = \frac{-i}{(i\hbar)^{2}} \mu_{fi} \mu_{ig} \int d\omega \frac{E(\omega)E(\omega_{fg} - \omega)}{\omega_{ig} - \omega - i\Gamma_{i}}$$

Transition is dominated by a single resonant level

For narrow levels ($\Gamma << \Delta \omega$):

$$a_{f}(\infty) \propto i\pi E(\omega_{ig})E(\omega_{fi}) + \int d\omega \frac{E(\omega)E(\omega_{fg} - \omega)}{\omega_{ig} - \omega}$$

On-resonant term

Resonant Transitions

Looking at the off-resonant term:

$$\int d\omega \frac{E(\omega)E(\omega_{fg}-\omega)}{\omega_{ig}-\omega}$$

For transform limited pulses, frequencies around the resonance interfere destructively

Transform-limited pulses no longer maximize transition rates!

Pulses can be shaped to enhance TPA

 $f\rangle$

Method 1 (amplitude shaping):

Eliminate all frequency components that contribute destructively ($\omega < \omega_{ig}$)

Dudovich et al., Phys. Rev. Lett. 86, 47 (2001)

Energy level structure of Rubidium

spectral blocking

Dudovich et al., Phys. Rev. Lett. 86, 47 (2001)

Method 2 (phase shaping):

Manipulate phases to induce constructive interference by all frequency pairs

Dudovich et al., Phys. Rev. Lett. 86, 47 (2001)

Dudovich et al., Phys. Rev. Lett. 86, 47 (2001)

Control of Multiphoton Transition

- 1. Two-Photon Absorption
- 2. Coherent Transients
- 3. Strong Fields
- 4. CARS spectroscopy

Interaction of a broad band pulses and a narrow resonant transition

Resonant excitation of a two-level system

1st Order Time-Dependent Perturbation Analysis

$$a_{f}(t) = \frac{\mu_{fg}}{i\hbar} \int_{-\infty}^{t} dt_{1} \varepsilon(t_{1}) e^{i\omega_{fg}t_{1}}$$

$$a_{f}(\infty) = \frac{\mu_{fg}}{i\hbar} E(\omega_{fg})$$
Pulse Area
$$p_{f}(\infty) \propto \left| E(\omega_{fg}) \right|^{2}$$

$$|g>$$

Transitions only by resonant light Pulse shaping not effective – control not possible for times after the pulse $(t=\infty)$

Interaction of a broad band pulse and a narrow resonant transition

$$a^{(1)}(t) = \frac{\mu_{1g}}{i\hbar} \int_{-\infty}^{t} dt_1 e(t_1) \exp(i\omega_0 t_1)$$

During the pulse, all frequencies contribute:

$$a^{(1)}(t=0) = -\frac{\mu_{1g}}{\hbar} \left[i\pi E(\omega_0) + \wp \int_{-\infty}^{\infty} d\omega_1 \frac{E(\omega_1)}{\omega_0 - \omega_1} \right]$$

on-resonance off-resonance

Transient population with shaped pulses

Pump probe experiment in Rb atoms

Experimental set-up

Transient population enhancement experimental results

Transient population enhancement experimental results

The theoretical limit

"Atomic shaper"

$$E(\omega,l) = E(\omega,0) \cdot \exp\left[\frac{-\alpha_0 l}{1 - i(\omega - \omega_0)T_2}\right]$$

Phase inversion with a T₂ resolution!

"Atomic shaper"

"Atomic shaper"

Transient population by propagation effects

Transient population by propagation effects

Control of Multiphoton Transition

- 1. Two-Photon Absorption
- 2. Coherent Transients
- 3. Strong Fields
- 4. CARS spectroscopy

The problem with strong-field control

 $a_f(\infty) \propto \int \varepsilon^2 (t) \exp(i\omega_{fg}t) dt$

- Perturbation analysis is no longer valid
- Power broadening and AC shifts complicate response
- Transitions no longer depend on a single frequency-component of $\epsilon^2(t)$

The Solution: Fields with a single quadrature

 $E(t) = A(t) \exp(i\omega t)$

Carrier is modulated only in amplitude.

With A(t) a REAL function, a two-level system evolves only with the pulse area

The area is just the Fourier component of the resonant frequency

The Solution: Fields with a single quadrature

For a nonresonant N-photon transition, same is true if

$$E^{N}(t) = A(t) \exp(i\omega t)$$

With A(t) a REAL function. The system is again driven by a single frequency

$$\theta_N = \int A_N(t) dt$$

Phase modulation by sin or cos both yield single-quadrature $E^2(t)$ fields!

Nonresonant TPA modulation with a periodic phase

Control with a single quadrature

Dudovich et al. PRL 94, 083002 (2005)

Control of Multiphoton Transition

- 1. Two-Photon Absorption
- 2. Coherent Transients
- 3. Strong Fields
- 4. CARS spectroscopy

CARS Microscopy

CARS Image tuned to DNA backbone vibration at 1090 cm⁻¹ in mitosis

CARS image of **fibroblast cells** that are stimulated to synthesize lipids. The lipid droplets are visualized with CARS tuned to the C-H vibration at 2845 cm⁻¹.

Single-Pulse CARS spectroscopy

A single ultrashort, broadband pulse (shorter than the vibrational period) to provide all 3 frequencies

Issues: Resolution Nonresonant Background

CARS control schemes

- Goal: to achieve high-resolution (ps) CARS spectroscopy using a single broadband source through coherent control
- Methods:
 - Selective excitation
 Use quantum control to excite just a single Raman level

– Multiplexed CARS

Excite with wide band, read with an effective narrow probe to resolve spectrum

Two-photon processes

2nd Order Time-Dependent Perturbation Analysis

$$a_f(\infty) \propto \int \varepsilon^2(t) \exp(i\omega_{fg}t) dt$$

Broad-band excitation of a Raman transition

Transform-limited pulses maximize transition rates

Periodic phase functions maintain efficiency

Oron et al., Phys. Rev. A 65, 043408 (2002)

Impulsive excitation

Selective excitation

Weiner et al., Science 273, 1317 (1990)

Single-pulse CARS with periodic phase

Single-pulse CARS microscopy

Single-pulse CARS with periodic phase -Spectroscopy by selective excitation

Population amplitude (monitor 577cm⁻¹ level)

CARS snectrosconv Modulated spectral phase function $\Phi = 1.25 \cos(c \omega)$ λ **Fourier transform** $Ba(NO_3)_2$ (1048 cm⁻¹) Intensity [AU] Diamond (1333 cm^{-1}) 0.5 0 0.5 Toluene (788, 1001 cm⁻¹) 0.5 0 0.25 lexan

1400

 $E[cm^{-1}]$

700

1000

700

τ [fs]

0.5∟ 400

Single-pulse CARS microscopy

Dudovich et al., Nature 418, 512 (2002)

Pulses are shaped to maximize CARS signals from specific molecules

New fast pulse-shape modulation techniques are useful for Lock-in detection on pulse shapes

Single-pulse analog of multiplexed two-color CARS

Simple schemes for separating a spectrally narrow probe within a broadband pulse

- Modulation of spectral amplitude
- Modulation of spectral phase
- Modulation of spectral polarization

Oron *et al.*, Phys. Rev. Lett. **89**, 273001 (2002) Oron *et al.*, Phys. Rev. Lett. **90**, 213902 (2003)

Narrow probing by an orthogonal polarization

Oron *et al.*, Phys. Rev. Lett. **90**, 213902 (2003)

Polarization and phase shaping

Brixner and Gerber, Opt. Lett. 26, 557 (2002)

CARS spectrum - Narrow probing

Measured CARS spectrum from iodomethane (523cm⁻¹)

1.2nm (20cm⁻¹) wide y polarized probe

Narrow probing by polarization and phase shaping

CARS spectrum - Narrow probing

Measured CARS spectrum from iodomethane (523cm⁻¹)

1.2nm (20cm⁻¹) wide y polarized probe

Multiplexed CARS spectra

Spectral resolution currently limited by SLM pixellization

Thanks...

Coherent Control:

Nonclassical Light: Microscopy:

Doron Meshulach Nirit Dudovich Dan Oron Thomas Polack Evgeny Frumker Adi Natan Haim Suchowski Barry Bruner V Prabhudesai

Barak Dayan Avi Pe'er Itay Afek Yaron Bromberg Dvir Yelin Eran Tal Ori Katz

Solitons:

Hagai Eisenberg Yaniv Barad Roberto Morandotti Daniel Mandelik Asaf Avidan Yoav Lahini

Next : Can you shape a single photon?

www.weizmann.ac.il/~feyaron

- Precise control of multiphoton transitions
- Transform limited pulses are not necessarily optimal
- Single-photon absorption is not necessarily boring
- CARS with single source via coherent control