Creation, shaping and characterization of femtosecond laser pulses

M. Wollenhaupt and T. Baumert

Universität Kassel

Institut für Physik

Energ

Outline

Generation

Laser modes

Mode locking

Pulse amplification

Manipulation

Dispersion in optical systems

Mathematical description

Pulse shaping

Measurement

Time domain

Frequency domain

Joint time frequency domain

U N I K A S S E L V E R S I T A T

Literature

Femtosecond Laser Pulses (second edition) Claude Rulliere, Springer 2004

Ultrashort Laser Pulse Phenomena (second edition) Jean-Claude Diels and Wolfgang Rudolph, Academic Press 2006

Frequency-Resolved Optical Gating *Rick Trebino, Kluwer 2002*

Springer Handbook of Laser and Optics, Chap. 12 Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement, M. Wollenhaupt, A. Assion and T. Baumert, Springer 2007 (available from our homepage physik.uni-kassel.de/index.php?id=exp3)

Mode locking quantitatively

Single mode: $E_n(t) = E_0 \sin \{2\pi [\nu_0 + n \, \delta \nu] t\}$

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

Passive mode locking with Kerr lens

At high intensities, the index of refraction is getting intensity dependent

$$n(x, y, t) = n_0 + n_2 I(x, y, t)$$

The Kerr lens generates self focussing

The spatial intensity distribution of the laser beam together with a Kerr nonlinearity establishes a KERR LENS

An aperture yields high losses for cw and low losses for pulsed operation

Pulse amplification

Problem: High intensities! (self focusing followed by destruction)

$$Power = \frac{Energy}{Pulse\,duration}$$

 $\label{eq:Intensity} \textit{Intensity} = \frac{Energy}{Pulse\,duration \cdot Area}$

BIG lasers $Area \uparrow \Rightarrow Intensity \downarrow$

Chirped Pulse Amplification (CPA) $Pulse duration \uparrow \Rightarrow Intensity \downarrow$

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

Parameters of our laser system

- Pulse duration: 25 fs
- Repetition rate: 1 kHz
- Spectral width: 750 nm 840 nm
- Energy per pulse: 1 mJ (can heat 1 g H₂O by 1/4000 °C)
- Number of photons per pulse: 10¹⁵
- Peak power: 40 GW (nuclear power plant typical 1-2 GW)
- Intensity in 10 µm focus: 50 PW/cm² (Solar constant 0.14 W/cm²)
- Tunability with nonlinear optics: 200 nm 2300 nm
- Pulse shaping in phase, amplitude and polarization

U N I K A S S E L

VERSIT'A'T

Dispersion of broadband light

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

_UNIKASSEL_____ VERSITÄT

Mathematical description

Taylor expansion of the phase function

$$\varphi(\omega) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n \varphi}{\partial \omega^n} \Big|_0 \cdot \omega^n \qquad \phi_n = \frac{\partial^n \varphi}{\partial \omega^n} \Big|_0$$

- Absolute phase ϕ_0
- Linear phase ϕ_1
- Quadratic phase ϕ_2 (GDD, chirp)
- Cubic phase ϕ_3 (TOD)
- Sinusoidal modulation

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

Phys. Rev. A, 89, 063407, (2004)

UNIKASSEL **VERSIT'A'T**

Quadratic spectral phase: chirp

UNIKASSEL VERSITÄT Controlling the chirp by ϕ_2 $E_{mod}(t)$ $\phi_2 = 0 \text{fs}^2$

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

<u>UNIKASSEL</u> VERSITAT

Duration of a chirped pulse

$$\mathcal{E}_{mod}(t) = \frac{\mathcal{E}_0}{2\gamma^{\frac{1}{4}}} e^{\underbrace{\frac{t^2}{4\beta\gamma}}{2}} e^{i(\alpha t^2 - \varepsilon)}$$

$$\Delta t_{mod} = \sqrt{\Delta t^2 + [\ln(16)]^2 \left(\frac{\phi_2}{\Delta t}\right)^2}$$

$\Delta t \phi_2$	100 fs ²	200 fs ²	500 fs ²	1000 fs ²	2000 fs ²	5000 fs ²
10 fs	29.5	56.3	139	277.4	554.6	1386.3
20 fs	24.3	34.2	72.1	140.1	278	693.4
30 fs	31.4	35.2	55.1	97.2	187.3	463.1
100 fs	100	100.2	101	103.8	114.3	170.9

Duration of a chirped pulse

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

-MM

Summary chirp

- The linear chirp is generated by a quadratic spectral phase function $\varphi(\omega)$
- ...corresponding to a linear $T_{g}(\omega)$ (Group Delay Dispersion, GDD).
- A Gaussian envelope pulse is stretched symmetrically and stays Gaussian reducing the intensity
- Short pulses will be stretched more than long pulses (for a given ϕ_2).
- The sign of ϕ_2 controls the "direction" of the chirp: > 0 up-chirp, < 0 down-chirp
- The temporal envelope is complex valued characterized by a quadratic temporal phase ζ(t)
- ...leading to a linear increase / decrease of the instantaneous frequency $\Delta \omega(t)$
- There is a maximum (temporal) chirp rate α for a given pulse duration

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

Counteracting dispersion in an optical system

In (most) transparent media red frequency components travel faster than blue ones leading to up-chirped pulses

Find optical system where blue components travel faster (shorter optical length) than red ones introducing negative dispersion

Several realizations:

- chirped mirrors
- angular dispersion (grating and prism arrangements)
- programmable pulse shapers

Fork et. al., Opt. Lett, 9, 150, (1984)

red

blue

Grating arrangements

Optical path "red" equals optical path "blue" Zero Dispersion Compressor often used in pulse shaping devices

Optical path "red" smaller optical path "blue" **Stretcher**

Optical path "red" larger optical path "blue" Compressor

U N I K A S S E L V E R S I T A' T

Shaping ultrashort light pulses by Fourier synthesis

Shaping light: an early experimental layout

Sir Isaac Newton **Opticks** (1721 edn), book I, part II, fig.16.

Fourier transform pulse shaper

Martínez: IEEE J. Quantum Electron 24(12), 2530-2536 (1988), Weiner et al.: JOSA B 5(8), 1563-1572 (1988)

Compact pulse shaper

Rev. Sci. Inst., 74, 4950, (2003)

Sinusoidal phase modulation $\tilde{\mathcal{E}}(\omega) \cdot e^{-i\mathbf{A}\sin(\omega \cdot \mathbf{T} + \phi)}$

Sinusoidal phase modulation produces pulse trains

U N I K A S S E L **V E R S I T A' T**

New twist in pulse shaping: polarization shaping

Scalar

- Modulation of intensity and phase
- Linearly polarized of E-field

Review:

Weiner: Rev. Sci. Instrum. **71**, 1929, (2000) Rev. Sci. Inst., **74**, 4950, (2003) Vectorial

- Controlling intensity, phase and polarization
- Polarization state varies within a single pulse

Brixner et al.: Opt. Lett. 26, 557, (2001)

A compact set-up for polarization shaping

Key features:

- Polarization shaping
- Phase & amplitude shaping
- 2x 640 pixel modulator

U N I K A S S E L V E R S I T A' T

Pulse gallery

Laser control by adaptive optimization

Pulse characterization

- Time domain
- Frequency domain
- Joint time frequency domain

Signals

One photon

$$S_{linear}(\tau) = \int_{-\infty}^{\infty} \left\{ \frac{E(t) + E(t+\tau)}{2} \right\}^2 dt$$

Linear autocorrelation

 $S_{linear}(\tau) = \int_{-\infty}^{\infty} \left\{ \frac{E(t) + E(t+\tau)}{2} \right\}^2 dt$

$$= 2 \int_{-\infty}^{\infty} E^2(t) dt + 2 \int_{-\infty}^{\infty} \frac{E(t)E(t+\tau)}{E(t+\tau)} dt$$

KASSEL

SITÄT

Е

R

The linear autocorrelation function is always gerade!

Linear autocorrelation of a sinusoidally modulated pulse

Sinusoidal modulation (A = 1)

Linear autocorrelation

Appl. Phys. Lett., 87, 121113 (2005)

2nd order autocorrelation of a bandwidth limited pulse

$$S_{quad}(\tau) = \int_{-\infty}^{\infty} \left\{ \frac{E(t) + E(t+\tau)}{t} \right\}^4 dt$$

10 fs bandwidth limited

2nd order autocorrelation

2nd order autocorrelation

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

Spectral interference

Spectral interference

 $E_2(t) = E_{mod}(t) + E(t+\tau)$

 $\tilde{E}_2(\omega) = \tilde{E}_{mod}(\omega) + \tilde{E}(\omega)e^{i\omega\tau}$

$$= \tilde{E}(\omega)e^{-i\varphi(\omega)} + \tilde{E}(\omega)e^{i\omega\tau}$$

$$PSD_{2}(\omega) = 2\left\{1 + \cos[\omega\tau + \varphi(\omega)]\right\} PSD(\omega)$$

Power Spectral Density
$$PSD = |\tilde{E}(\omega)|^2$$

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

_____ U N I K A S S E L____ V E R S I T A' T

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

U N I K A S S E L V E R S I T A' T

JTFA in optics: FROG

FROG = Frequency Resolved Optical Gating

UNIKASSEL

VERSIT'A'T

PG FROG of a bandwidth limited pulse

$$I_{Frog}^{PG}(\omega,\tau) = \left| \int_{-\infty}^{\infty} \mathcal{E}(t) |\mathcal{E}(t-\tau)|^2 e^{i\omega t} dt \right|^2$$

U N I K A S S E L V E R S I T A T

PG FROG of a chirped pulse

$$I_{Frog}^{PG}(\omega,\tau) = \left| \int_{-\infty}^{\infty} \mathcal{E}(t) |\mathcal{E}(t-\tau)|^2 e^{i\omega t} dt \right|^2$$

Spectrogram

Basics on Quantum control, Cargese-Corsica, 17-23 August 2008

PG FROG of a TOD pulse

$$I_{Frog}^{PG}(\omega,\tau) = \left| \int_{-\infty}^{\infty} \mathcal{E}(t) |\mathcal{E}(t-\tau)|^2 e^{i\omega t} dt \right|^2$$

Analogy to music

Time —

Prof. Dr. T. Baumert PD Dr. M. Wollenhaupt

T. Bayer

L. Englert

C. Horn

