

Menu

- Shaping the probe in a pump-probe experiment
- Factorization of numbers using Gauss sum.
- Shaping UV pulses using a new AOPDF device

The probe is so important!!

Probing wavepacket interferences in I_2 by scanning the probe wavelength

H. Katsuki, H. Chiba, B. Girard, C. Meier and K. Ohmori, Science **311**, 1589 (2006) *Femto group - LCAR - Toulouse*Cargese 2008
3 What's happen if the probe is shaped? Some results have been obtained to emphasize the importance of the probe's wavelength

THE JOURNAL OF CHEMICAL PHYSICS 127, 014312 (2007)

Control of wave packets in Li₂ by shaping the pump and probe pulses for a state-selected pump-probe analysis of the ionization continuum

Xingcan Dai and Stephen R. Leone^{a)}

Femto group - LCAR - Toulouse

Department of Chemistry, University of California, Berkeley, California 94720; Department of Physics, University of California, Berkeley, California 94720; and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720

(Received 16 January 2007; accepted 8 May 2007; published online 5 July 2007)

Shape the phase of the probe

Quantum holography : to follow the wave function in real time

Articles published week ending 17 MARCH 2006

Volume 96, Number 10

Monmayrant et al PRL 96, 103002 (2006)

To implement Temporal Fresnel lens

Degert et al, PRL 89, 203003-2 (2002)

To use the coherence of the atom to reconstruct the electric field.

Monmayrant et al OL 31, 410 (2006)

Experimental Set-up

Femto group - LCAR - Toulouse Car

Cargese 2008

the probe.

Our high resolution pulse shaper

- Phase/Amplitude control over 640 pixels.
- shaping window of 35 ps.
- high complexity.
- high amplitude dynamic (30 dB).
- 75 % power transmission.

Femto group - LCAR - Toulouse

A. Monmayrant, B. Chatel. "A new phase and amplitude High Resolution Pulse Shaper." *Rev. Sci. Inst.* 75, 2668 (2004)

Analogy with the Fresnel diffraction : τ corresponds to the position of the sharp edge in the gaussian beam

Does it mean that we can have access to a very short dynamic even the pump-probe are long?

Pump-probe experiment : a particular case of a two-photon transition

 Work in progress : Long rise time

 (averaging on the whole spectrum)
 Short rise time (by filtering the photoe spectrum)

Behavior as a function of the pump-probe delay?

Menu

- Shaping the probe in a pump-probe experiment
- Factorization of numbers using Gauss sum.
- Shaping UV pulses using a new AOPDF device

Femto group - LCAR - Toulouse

In practice : truncated Gauss sum

$$A_{N}(k) = \sum_{m=0}^{M-1} \rho_{m} \exp\left[2i\pi m^{2} \frac{N}{k}\right]$$

The first few terms are enough to discriminate factors from non-factors (W.P. Schleich et al)

M is the order of the truncation and could be adjusted.

Many theoretical and experimental results

- Theory :
 - Merkel et al, Fortschr. Phys. 54, 856 (2006)
- NMR :
 - Mehring et al, Phys. Rev. Lett. 98, 120502(2007)
 - Mahesh et al, Phys. Rev. A 75, 062303(2007)
- Cold atoms:
 - Gilowski et al, Phys. Rev. Lett. 100 (2008)
- Our results with ultrashort pulses
 - Bigourd et al, Phys. Rev. Lett. 100, 030202 (2008)
 - Weber et al, Eur. Phys. Lett (2008)

In all these experiments, the terms of the sum are precalculated....

Challenge : to find a physical system in which the Gauss sum will be calculated \ll automatically \gg for all values of k between 2 and \sqrt{N} sequentially or in parallel

Our proposition using ultrashort pulses

First results

Good agreement between experiment and theory:

Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses D. Bigourd, B. Chatel, W. P. Schleich, B. Girard, PRL (2008)

Femto group - LCAR - Toulouse

Experimental Results N=1'340'333'404'807 =11003*11027*11047

Shaping between 200nm and 400nm

- Using a new AOPDF device in the UV (see Kaplan's talk). Main limitation : only 12% of the energy on the shaped pulse (50% absorption+ diffraction efficiency).
- Using cross-correlation technique by difference frequency mixing
- Using two-photon absorption in the diamond as a characterization tool

Conclusion

- Shaped probe : Coll with P. Salières (Saclay) to implement an experiment with HH
- Factorization : To find a system which calculates directly the Gauss sum
- Shaping and Characterization in the UV : To improve our device, to compare with a new device using MEMS recently developped by J.P. Wolf (Geneva)

LOOKING for a phD student (FASTQUAST)