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A Few Classical Examples

 Ubiquitous in physics and chemistry

 Atoms diffusing on a surface and Diffusion Limited Aggregation

 Atomic clusters

 Chemical reactions (A+B → C)

 Smoke in air/latex particles at the surface of water

 Breath figures 

http://apricot.polyu.edu.hk/~lam/dla/dla.html


But Also…

 Two-dimensional decaying turbulence

 Epidemics spreading (S+H → S+S, S → H, or S → Ø…)

 Formation of river and vascular networks



And Even…

 Galaxy… or bacteria clusters

 Poker tournaments (players “aggregate”, chips are conserved…)

 … and the reverse and similar problem of fracture (A → A+A)



Important Features

 Importance of conservation laws: mass, energy, 

momentum, or more exotic quantities (flow of a river, 

chips in a poker tournament…)

 Important quantities: distribution of cluster masses (or 

joint distribution of conserved quantities), number of 

remaining clusters…

 This distribution of “mass” can be mono or polydisperse 

and is often scale invariant: ( , ) ( / )zP m t t f m t



Important Features

 Importance of the diffusive or ballistic motion of clusters

 Possibility of obtaining compact or fractal clusters

 The mean-field approach (neglecting spatial correlations) 

is often incorrect in low effective dimensions 
(typically d· 2 or even d· 4 for diffusion processes)

 Out of equilibrium reaction/aggregation processes can 

lead to dynamical phase transitions (directed 

percolation…)



A Few Selected Topics

Simple reaction-diffusion processes: 

A+A → Ø; A+B → Ø; A+A → A 
(application to a river network, in the latter case)

Monodispersity (bell-shaped mass distribution) 

& polydispersity (power-law mass distribution) 

in the framework of Smoluchowsky’s approach 
(application to breath figures and… poker tournaments)

Dynamical phase transitions: 
A+A → Ø, A → (n+1)A 
(n odd: directed percolation; n even: parity conserving)



Reaction-Diffusion Processes

 The reaction

Mean-field approach:

In fact, there is a strong depletion effect near surviving 

particles:

And the mean-field approximation is exact in

The mean-field decay is the fastest and can be realized by 

stirring the solution (hence eliminating spatial correlations)  
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Reaction-Diffusion Processes

 The reaction

Mean-field approach:

In fact, when            

there is again a very strong 

depletion effect giving rise to 

segregation of the particles
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Reaction-Diffusion Processes

 The reaction

A physical argument:

Initially, in a region of linear size L, 

The species in excess will dominate in this region, and 
L is ultimately the diffusion length, L(t)~t1/2. Hence, 

And the mean-field approximation is exact in
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Reaction-Diffusion Processes

 The reaction

Mean-field approach:

Same depletion effect as for                   :

And the mean-field approximation is again exact in
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Reaction-Diffusion Processes

 The reaction                     with conservation of “mass”

Mean-field approach (Smoluchowsky’s equation):

Mean-field solution:

Only correct in 
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Reaction-Diffusion Processes

 The reaction                     with conservation of “charge” and 

constant injection of particles (mass distribution        )

Mean-field approach (Smoluchowsky’s equation):

General scaling solution:

Polydispersity
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Reaction-Diffusion Processes

Application to the formation of a river network

 Fractal dimension:

 The “next” river is 

~ 3 x longer than 

the previous one

V=pR2

V=R2

V=R3 V=R4/3

4

3
fd 



General Mean-Field Approach

A general physical aggregation process is described by:

 Conservation law(s):

 Nature of the collision/aggregation physical process: the 

merging Kernel,

Ex: d-dimensional “cross-section”  ¾~Rd and  m~RD

 Intrinsic growth of clusters

 Deposition: 

 Fracture Kernel

 … 
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General Mean-Field Approach

A general physical aggregation process is described by:

Can describe many physical situations and  can lead 

to mono and polydispersity and even gelation…

 ( , ) ( , )

(

( ,

, )

) ( , ) ( , ) ( , )

2 ( , ) ( , )

( , ) ...Fracture

m t v m t m s t s tm t K m s s ds
t m

m t s t ds

t

m

m

s

I

K


  

 










 

  
 



  







General Mean-Field Approach
The general case of pure aggregation

 Assume that the collision Kernel satisfies

 Then (Van Dongen and Ernst), there is a precise 

mono/polydispersity criterion:
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Scaling distribution of fortunes (stacks):

Scaling equation (integro-differential and 
non-linear; no parameter):

Scaling in Poker Tournaments



Internet & WPT Data 
(20-10000$ buy-in)



Dynamical Phase Transitions

Consider the reaction/breakdown process for diffusing 
particles: A+A → Ø (rate k), A → (n+1)A (rate p)

Mean-field approach:

Mean-field completely fails in describing the fact that for 
d<dc, one has pc>0, and different universality classes 

depending on the parity of n
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Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

4 0.276486(6) 0.159464(6; 1, ... )... for  and cd d    

 1 1/ 5 / 2 0.276393..1 . !Best theoretical estimate in : d    

Field theoretical methods available for  close to cd d
2( / 6 0.01128 ...; 41 )d     
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Dynamical Phase Transitions

Odd n: the directed percolation (DP) universality class

 DP universality class is ubiquitous in out of equilibrium 

physics and is thus very robust (adding the reaction 

A+A → A does not change anything…),… except in the 

presence of disorder

 In principle, many possible experimental realizations:

 Catalytic reactions on a surface (CO+O → CO2)

 Growing interfaces

 Flowing granular matter  

 Porous media

 Turbulent liquid crystals

 …
Douady & Daer



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in 

turbulent liquid crystals 
(intermittent regimes between to dynamic scattering modes – DSM)



Dynamical Phase Transitions

DP universality class observed in d=2+1 (time) in 

turbulent liquid crystals (scaling function)
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Dynamical Phase Transitions

Even n: the parity conserving (PC) universality class 

(a “theorist’s curiosity”)

dc>1, but dc· 5/3<2 !

Different critical exponents from DP (in d=1, ¯¼ 0.4, ±¼ 0.2) 

Strong numerical corrections to scaling (DP ???)

No analytical (even approximate) results available 



Conclusion

Reaction/aggregation processes:

Are ubiquitous in Nature

Appear at all spatial and temporal scales

Offer rich physical properties (dynamical phase diagram, 

fractals, dynamical scaling…)

 Involve all the modern tools of theoretical physics 

(field theory, renormalization group, perturbative and non 

perturbative methods, sophisticated numerical methods…)

Thank you for your attention


