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Context:

- Dispersion distorts the pulse. The sample is 
excited by a different field.

- A lot of physical and chemical processes depend 
on pulse temporal shape and phase

Shaping devices are limited :

•Wavelength

•Passive :No Amplification, Cannot create new frequencies

Resonant atomic dispersion and light-shifts may 
be an alternative



At atomic resonance:
– Gain
– Modification of pulse shape



1. Propagation of ultrashort pulses

2. Direct compensation with a pulse shaper

3. Case of an ultrashort pulse train.

4. Propagation in an atomic system driven

by a strong pulse

5. Towards « active » pulse shaping



1. Propagation of ultrashort pulses

a) Non resonant medium
– Transparent

– Dispersion : 
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1. Propagation of ultrashort pulses

b) Resonant (two level system)

– Total absorption negligible:
Γ << ΔD << Δω

– Dispersion : 
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Cannot be developed around 
central laser frequency

Second order no longer representative
All order are involved

Compensation with standard devices

COMPENSATION ?



2. Compensation with a pulse shaper
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640 pixels phase-amplitude SLM : 0,06 nm
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Compensation with a pulse shaper

Efficient 
Compensation

Up to 85% of 
the incident 

energy recovered 
below the initial 
pulse envelop



Origin of Limitations:

ϕ(n)(n) ϕ(n+1)(n+1)
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⇒ Spectral hole around λ !

Finite spot size for each
spectral component

When Laser spot covers 2 Pixels

: Interferences( ) ( )1n nϕ ϕ+ ≠

1. Pixelisation: under-sampling (0.06 nm)

2. Diffraction :
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SPECTRUM

Sin(φSLM)

Sin(φDISP) ν-ν0 (THz)

•Asymptotic part well reproduced

•Unable to reproduce exact behaviour
near the resonance

•Spectrum intensity is afffected

Compensation with a pulse shaper



Flat Phase



3. Case of an ultrashort pulse train

• Independent pulses : Intensity superposition.
• Mutually coherent pulses: Field superposition . 

Depends on both and T
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High sensitivity

Robust propagation

PHASE CONTROL OF DISPERSION EFFECTS



4. Propagation in an atomic system driven
by a strong field

Modifications due to the Strong Field 
(effect of Relative Phase and Intensity)

On the energy and temporal Profile
of the propagating pulse 

Rb atom 1/ 2 1/ 24 4→s S p P



Coherent Control of the Gain 

Half the
optical
period !!

- Crossed polarisation !
- Interference at in one photon transition!!!!2ωL
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Looking at the population the excited state:
24 cos / 2φ=fn n

Interference between two absorption paths phase-shifted by

Interpretation
1- « Ordinary » interference in one photon transition (Temporal Ramsey fringes)



2- Our situation
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1- Interf. between absorp. and emis. paths connecting two linear superp. of states 
2- Interference phase      ,                  the phase with respect to the strong field. 
3- The two paths are « synchronous » (phase shifted but not delayed!)

Interference phase :  2φ

2φ φ ω= L at



Dressed state analysis
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Transparency window
Non-resonant

Action of the weak field

Two situations
0φ = 2

πφ =

Absorption/amplification
Resonant



Dependence vs Strong Field energy
at Zero Delay
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EXPERIMENT

THEORY



1.2F =θ π

Control of the Shape



Phase φ

Control Field Strength θF

Energy

Shape



5. Towards « active » pulse shaping

Classical devices (pulse shaper)

Passive : no amplification 
no creation of spectral components

Strongly driven system

Active: create new frequencies
(light-shift)



Transient Light Shift in a 3 level Ξ system
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Varying Dipole Frequency
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Varying laser Frequency
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•Self-induced heterodyne field

•Mapping of the incident field 
phase on the intensity profile

•Direct basic temporal shaping
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Chirped pulse propagation: principle



Chirped pulse propagation: experiment

Depth of modulation
increases with the density



Conclusion

• Atomic system at equilibrium:
Compensation of Dispersion for a weak pulse 
and a pulse train  

• Strongly driven atomic system :
2ω Oscillations on one photon transition

– Coherent Control of Energy
– Coherent Control of the pulse Shape and possibility

of active pulse shaping
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