Control of dispersion effects for resonant ultrashort pulses

M. A. Bouchene, J. C. Delagnes

Laboratoire « Collisions, Agrégats, Réactivité », Université Paul Sabatier, Toulouse, France

Context:

- Dispersion distorts the pulse. The sample is excited by a different field.

- A lot of physical and chemical processes depend on pulse temporal shape and phase

Shaping devices are limited :

•Wavelength

•Passive : No Amplification, Cannot create new frequencies

Resonant atomic dispersion and light-shifts may be an alternative

At atomic resonance:

- Gain
- Modification of pulse shape

- 1. Propagation of ultrashort pulses
- 2. Direct compensation with a pulse shaper
- 3. Case of an ultrashort pulse train.
- 4. Propagation in an atomic system driven by a strong pulse
- 5. Towards « active » pulse shaping

1. Propagation of ultrashort pulses

. Propagation of ultrashort pulses

b) <u>Resonant (two level system)</u>

- Total absorption negligible:
 - $\Gamma << \Delta_D << \Delta \omega$
- Dispersion :

 ω_0

Optical depth

Rubidium, $4S_{1/2} - 4P_{1/2} \tau_0 = 75fs; \alpha_0 I\Delta_d = 3THz;$

COMPENSATION ?

$$\phi(\omega) \simeq \frac{\alpha_0 L \Delta_D}{\omega - \omega_0}$$

Cannot be developed around central laser frequency

Second order no longer representative All order are involved

Compensation with standard devices

2. Compensation with a pulse shaper

Compensation with a pulse shaper

 $\tau_{FWHM} : 120 \, fs \,, \lambda = 794, 76 \, nm$ $Rb: 5^2 S_{1/2} \rightarrow 5^2 P_{1/2} \,, \alpha_0 L \simeq 21500$

> Efficient Compensation

Up to 85% of the incident energy recovered below the initial pulse envelop

Origin of Limitations:

1. Pixelisation: under-sampling (0.06 nm)

Finite spot size for each spectral component When Laser spot covers 2 Pixels

 $\varphi(n+1) \neq \varphi(n)$: Interferences

 \Rightarrow Spectral hole around λ !

Compensation with a pulse shaper

- •Asymptotic part well reproduced
- •Unable to reproduce exact behaviour near the resonance
- •Spectrum intensity is afffected

3. Case of an ultrashort pulse train

- Independent pulses : Intensity superposition.
- Mutually coherent pulses: Field superposition .

Depends on both ϕ and T

Robust propagation

PHASE CONTROL OF DISPERSION EFFECTS

Rb atom $4s S_{1/2} \rightarrow 4p P_{1/2}$

Coherent Control of the Gain

- Crossed polarisation !
- Interference at $2\omega_L$ in one photon transition!!!!

Interpretation

1- « Ordinary » interference in one photon transition (Temporal Ramsey fringes)

Looking at the population the excited state:

$$\boldsymbol{n}_f = 4\boldsymbol{n}\cos^2\phi/2$$

Interference between two absorption paths phase-shifted by $\phi = \omega_L t_a$

2- Our situation

 $m_{\rm I}$ =-1/2

 $m_{\rm I}$ =-1/2

 $m_{I} = +1/2$

 $m_1 = +1/2$

S_{1/2}

 σ

 σ

Interference phase 2ϕ

Absorption Path

Emission Path

1- Interf. between absorp. and emis. paths connecting two linear superp. of states 2- Interference phase 2ϕ , $\phi = \omega_L t_a$ the phase with respect to the strong field. 3- The two paths are « synchronous » (phase shifted but not delayed!)

Dressed state analysis

Action of the weak field

Dependence vs Strong Field energy at Zero Delay

Control of the Shape

5. Towards « active » pulse shaping
Classical devices (pulse shaper)
Passive : no amplification

no creation of spectral components

Strongly driven system

Active: create new frequencies (light-shift)

Transient Light Shift in a 3 level Ξ system

<u>Varying</u> Dipole Frequency

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_0(t') - \omega_L \right) dt'$$

Fixed Laser Frequency

+

+

Fixed Dipole Frequency

 $\Delta \phi =$

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_0 - \omega_L(t') \right) dt'$$

<u>Varying</u> laser Frequency

Chirped pulse propagation: principle

·Self-induced heterodyne field

•Mapping of the incident field phase on the intensity profile

$$\Delta \phi = \int_{-\infty}^{t} \left(\omega_0 - \omega_L(t') \right) dt'$$

·Direct basic temporal shaping

Chirped pulse propagation: experiment

Conclusion

Atomic system at equilibrium:
Compensation of Dispersion for a weak pulse

and a pulse train

- Strongly driven atomic system : 2ω Oscillations on one photon transition
 - Coherent Control of Energy
 - Coherent Control of the pulse Shape and possibility of active pulse shaping